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Abstract—In this article we construct an infinite family of
linear error correcting codes over Fq for any prime power q.
The code parameters are

[q2t+ qt−1− q2t−1− qt, 2t+1, q2t+ q2t−2+ qt−1−2q2t−1− qt]q,

for any positive integer t. This family is a generalisation of the
optimal self-complementary binary codes with parameters

[2u2 − u, 2t+ 1, u2 − u]2,

where u = 2t−1. The codes are obtained by considering a sub-
matrix of a specially constructed generalised Hadamard matrix.
The optimality of the family is confirmed by using a recently
derived generalisation of the Grey-Rankin bound when t > 1,
and the Griesmer bound when t = 1.

Index Terms—Generalised Hadamard matrix, Grey-Rankin
bound.

I. INTRODUCTION

We use the usual notation (n,M, d)q to denote an error
correcting code in Fn

q of size M and minimum distance d. If
the code is a linear subspace of dimension k, then we denote
it as [n, k, d]q. As this work is a generalisation of a family of
binary codes, we begin by reviewing the binary case.

Definition 1: A Hadamard matrix H is an n by n matrix
with entries in {1,−1} such that,

HHT = nI,

where I denotes the n by n identity matrix.

It can be easily demonstrated that for a Hadamard matrix to
exist n must be a multiple of 4. It is conjectured, with strong
evidence, that a Hadamard matrix exists for all n divisible by
4.

Definition 2: A binary error correcting code C is said to be
self-complementary if for all words x ∈ C we have x+1 ∈ C,
where 1 is the all-1 vector (1, . . . , 1).

By changing the symbols in the rows of H from 1 and -1 to
0 and 1, then adding to this set of rows the complements of the
rows and puncturing this code in one coordinate (by deleting
any column) we obtain an optimal self-complementary code
with parameters (n − 1, 2n, n2 − 1)2. This is known as a

Hadamard code. The optimality of a self-complementary code
can be tested with the Grey-Rankin bound which states that

M ≤ 8d(n− d)
n− (n− 2d)2

,

provided the RHS of the inequality is positive. The Hadamard
code meets this bound with equality. A result of McGuire
[10] states that a self-complementary code meeting this bound
must be either a Hadamard code or must arise from a quasi-
symmetric design with specified intersection numbers. We do
not discuss the details of the quasi-symmetric designs here,
but we are interested in the codes they give. In [5] and [8]
there are constructions of these designs, which yield codes
with parameters

(2u2 − u, 8u2, u2 − u)2,

for u = 2m, m an integer, m > 1. These codes are believed
to exist for all even u. They have been shown to exist
whenever there exists a u times u Hadamard matrix (see [2]
and [3]). Also, there is a construction for u = 6 [4] but all
other cases where u is equivalent to 2 modulo 4 are open.
These constructions use the structure of Hadamard matrices
to obtain the quasi-symmetric designs and hence the codes.
When u = 2t−1, t > 1 and the codes have minimum 2-rank,
they give the linear family of codes

[2u2 − u, 2t+ 1, u2 − u]2.

This is the family of codes that we are going to generalise to
the q-ary Hamming space by using the structure of generalised
Hadamard matrices.

II. PRELIMINARIES

Definition 3: Let G be a group of order g and let λ be a
positive integer. A generalised Hadamard matrix GH(g, λ)
over the group G is a λg × λg matrix such that the pairwise
difference of any two rows of the matrix contains every
element of G exactly λ times.

For more about generalised Hadamard matrices we refer the
reader to [6] .



The generalised Hadamard matrix is called normalised if
the first row and the first column consist of only the identity
element of G. In this work we consider G to be the additive
group in the finite field Fqt for t ≥ 1, where q is the power of
a prime. The generalised Hadamard matrix is also considered
as a code where each row is a codeword of the code. For a
GH(g, λ), we get a code of length λg, size λg, and distance
λg − λ.

There has been more than one generalisation of the Grey
Rankin bound. In this article we are only using the most recent
one from Bassalygo, et. al. [1]. This generalised Grey-Rankin
bound is stated as follows.

Theorem 2.1: [1] Let C be an (n,M, d)q code such that
it can be partitioned into trivial maximal subcodes (n, q, n)q .
Then the size of the code satisfies

M ≤ q2(n− d)(qd− (q − 2)n)

n− ((q − 1)n− qd)2
.

The condition that a code can be partitioned into trivial
maximal subcodes (n, q, n)q is equivalent to the property, for
all words x ∈ C we have x+ 1 ∈ C. So this can be thought
of as a generalisation of the self-complementary property of
binary codes. Any linear code that contains the all one vector
also has this property. We also note, when q = 2 this bound
reduces to the binary Grey-Rankin bound.

For an [n, k, d]q linear code, the Griesmer bound gives the
length n(k, d) of the shortest linear code with dimension k
and minimum distance d.

Theorem 2.2: [11] Let C be an [n, k, d]q linear code. Then

n(k, d) ≥ d+ n
(
k − 1,

⌈
d

q

⌉)
= d+

⌈
d

q

⌉
+ · · ·+

⌈
d

qk−1

⌉
.

III. CONSTRUCTION OF GH(qk, q2t−k)

In this section we show how to construct a specific Gener-
alised Hadamard matrix with parameters GH(qk, q2t−k) from
a GH(qt, 1). The construction is achieved by considering the
GH(qt, 1) as a code and then performing code operations such
as extension and concatenation.

Let H denote the normalised generalised Hadamard matrix
GH(qt, 1) with entries

H(i, j) =

{
0, i = 0, or j = 0,

αi+j , 1 ≤ i, j ≤ qt − 1,

where α is a primitive element of Fqt . This matrix, when
considered as a codematrix, is a linear code with parameters
[qt, t, qt − 1]qt . The linearity of H can be proved as follows.
Let ri = (0, αi, αi+1, . . . , αi+qt−2) denote a row of the matrix
H . We let r0 = 0 denote the first row. Then observe that

ri + αlrj = (αi + αlαj)(0, 1, α, . . . , αqt−2)

= (0, αk, αk+1, . . . , αk+qt−2)

= rk,

where αk = αi + αlαj .
The fact that H is a generalised Hadamard matrix follows

from its linearity. Consider the code CH obtained by taking H
along with all its cosets H+β1 and β ∈ Fqt . The code CH is
also linear and has parameters [qt, 2t, qt − 1]qt . This code is
optimal because it satisfies the generalised Grey-Rankin bound
with equality [1]. Extend the code CH by appending an extra
element to every element of CH as described below. For each
i = 1, . . . , qt − 1, the row ri of H is extended by appending
the element αi and the first row of H is extended by appending
the element 0. Similarly the row in the coset H + β1 which
is obtained from row ri of H , is extended by appending αi to
it, and the row in the coset H +β1 corresponding to r0 of H
is extended by appending 0 to it. Denote this extended code
by C+H . The following lemma gives the parameters of C+H .

Lemma 3.1: The code C+H is an optimal nonlinear equidis-
tant code with parameters (qt + 1, q2t, qt)qt .

Proof: The extended code clearly has length qt + 1 and
size q2t. To determine the distances in the extended code we
first determine the distances in the code CH . The distance
between elements ri + β1, rj + β′1 of cosets H + β1 and
H + β′1, β, β′ ∈ Fqt , respectively, in CH is given by

d(ri + β1, rj + β′1) =


qt − 1, if β = β′, i 6= j

qt − 1, if β 6= β′, i 6= j

qt, if β 6= β′, i = j.

Thus, the distance between elements ri + β1 and rj + β′1 of
the extended code C+H is given by

d(ri + β1, rj + β′1) =


qt, if β = β′, i 6= j

qt, if β 6= β′, i 6= j

qt, if β 6= β′, i = j.

Hence, the code is equidistant. The code C+H is optimal because
it satisfies the Plotkin bound with equality. A code with
parameters (n,M, d)q satisfies the Plotkin bound if

M ≤
⌊

d

d− (q − 1)n/q

⌋
.

Straightforward calculations show that the RHS is exactly q2t

for the code C+H .

Next, we construct a family of generalised Hadamard
matrices GH(qk, q2t−k), for k = 1, . . . , t from the matrix
H = GH(qt, 1) and from the code C+H . This is obtained by
concatenating the code C+H with a punctured matrix obtained
from H .

Consider a linear projection of each element (in the additive
group of Fqt ) of H on to the additive subgroup in Fqk for any
k ∈ {1, . . . , t}. This projection can be achieved by first con-
sidering the field elements as vectors, with respect to a fixed
basis, and then mapping the last t−k coordinates to zero. This
gives a generalised Hadamard matrix H(k) = GH(qk, qt−k)
[6].



We construct a matrix H−(k) from H(k) by removing
its first column. When considered as a code H−(k) has
parameters [qt − 1, t, qt − qt−k]qk . We concatenate H−(k)
with C+H by replacing every element αi in C+H by the row ri
of H−(k), i = 1, . . . , qt−1, and by replacing the element 0 in
C+H by the first row of H−(k). Denote the concatenated code
by H−(k) ◦ C+H . Finally, extend the concatenated codematrix
H−(k) ◦ C+H by prepending an all-zero column to obtain the
codematrix H2(k).

Proposition 3.2: The matrix H2(k) is a generalised
Hadamard matrix GH(qk, q2t−k).

Proof: Since the distance between any two rows in C+H is
qt, the two rows are equal in exactly one position. Thus, the
number of zeroes in the difference of two rows of C+H ◦H−(k)
is exactly qt(qt−k−1)+qt−1. The extended code contributes
one extra zero to this count.

For any nonzero element, the number of such non-zero
elements in the difference of two rows of H−(k) ◦ C+H
is exactly qt(qt−k) since H−(k) contains all the nonzero
elements equally often. This proves that the code H2(k) is
a generalised Hadamard matrix.

IV. CONSTRUCTION OF OPTIMAL LINEAR CODES

In this section we describe the construction of a family of
optimal linear codes with parameters

[d(qt − 1), 2t+ 1, d(d− 1)]q,

where d = qt − qt−1. This optimal linear code is obtained
from H2 = H2(1). The construction is performed by first con-
catenating a punctured code obtained from CH with the code
H−(1). Then the resulting concatenated code is augmented
by the all-one vector.

Fix a positive integer s ≥ d. Puncture the code CH such that
the resulting code contains only the first s coordinates (more
generally, one may puncture it on any set of coordinates such
that the resulting code has exactly s coordinates). Denote the
punctured code by C∗H . It has parameters [s, 2t, s− 1]qt .

Consider the concatenation of the code C∗H with the code
H−(1). We denote the concatenated code by H−(1) ◦ C∗H .
Since the codes H−(1) and C∗H are Fq-linear, the concatenated
code H−(1)◦C∗H is also a linear code over Fq (see [7]). Con-
sider the code C(s) obtained by augmenting the concatenated
code by the all-one vector 1 of length s(qt − 1). Note that
the code C(s) can also be obtained by puncturing the matrix
H2(1) appropriately, and then augmenting it by the all-one
vector 1 ∈ Fs(qt−1)

q . The proposition below establishes the
parameters of the code C(s).

Lemma 4.1: The code C(s) has parameters

[s(qt − 1), 2t+ 1, (d− 1)s]q,

where d = qt − qt−1. The code C(s) has five distances (in
increasing order):
(d− 1)s, d(s− 1), sd+ qt − s− d, sd, and s(qt − 1).

Proof: The distances in the code C(s) are derived from
the distances in the component codes H−(1) and CH . Any two
rows of H−(1) have distance d = qt− qt−1. Two rows of C∗H
have distance either s or s−1. Thus two rows of H−(1)◦C∗H
have distance either sd or (s−1)d. Without loss of generality
let r0 be a row from H−(1)◦C∗H and r1 be a row from the set
of codewords {c+ 1 : c ∈ H−(1) ◦ C∗H}. If r1 = r0 + 1 then
the distance between them is s(qt − 1). Otherwise, we can
write r1 = r′ + 1, where r′ 6= r0. Then the distance between
the codewords is given as

d(r0, r1) =


s(qt − 1), if r1 = r0 + 1,

s(d− 1), if d(r0, r′) = s,

sd+ n− s− d, if d(r0, r′) = s− 1,

where the last case follows because the distance between the
vectors is (s−1)(d−1)+n−1. This establishes the distances
in the concatenated code C(s). The minimum distance of the
code can be inferred from the inequality s(d− 1) ≤ (s− 1)d,
for s ≥ d.

The optimal linear code is now obtained by reducing the
number of distances in the code to four distances. This is
effected by choosing s = d. It now has parameters

[q2t+qt−1−q2t−1−qt, 2t+1, q2t+q2t−2+qt−1−2q2t−1−qt]q,

Denote this linear code by C = C(d). Below we prove the
optimality of the code by comparing it to the generalised Grey-
Rankin bound for t > 1, and to the Griesmer bound for t = 1.
When t = 1 the code has parameters;

[q2 − 2q + 1, 3, q2 − 3q + 2]q.

Theorem 4.2: For a linear code containing the all one
vector, the code C = C(d) is optimal when t > 1. When
t = 1, C(d) is an optimal linear code.

Proof: Let n = qt and d = n−n/q. Let C be any linear
code with parameters [N,K,D]q where N = d(n − 1), D =
d(d− 1), and K is the dimension of the code. Let M be the
size of C.

We first prove the result for t > 1. Substituting the values
of N,D from the parameters of C gives us the generalised
Grey-Rankin upper bound

M ≤
q2
(
d(n− 1)− d(d− 1)

)(
qd(d− 1)− (q − 2)d(n− 1)

)
d(n− 1)−

(
(q − 1)d(n− 1)− qd(d− 1)

)2
= q2

dn(n− 2)/q

n/q − 1

= qn2
(
q −

(
1− (q − 2)(q − 1)

n− q

))
.

We have used the fact that d = n − n/q in arriving at the
above expression. Also note that n = qt and hence the term
multiplying qn2 = q2t+1 is strictly less than q. To show this,
substitute n = qt and note that for t ≥ 2,

(q − 2)

q

(q − 1)

qt−1 − 1
< 1.



For the linear code C with dimension K = 2t+1, it is optimal
if no larger linear code with dimension 2t+ 2 can be found.
The generalised Grey-Rankin bound thus proves the optimality
of C.

For t = 1, we use the Griesmer bound and show that C
satisfies the Griesmer bound with equality. Note that K =
2t + 1 = 3. To satisfy the Griesmer bound with equality we
need to show that

N = D +

⌈
D

q

⌉
+

⌈
D

q2

⌉
.

With D = (q−1)(q−2) and N = (q−1)2 it is readily verified
that the RHS of the above equation is (q−1)(q−2)+(q−2)+1
which equals the LHS.
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