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Abstract—In this article we construct an infinite family of
linear error correcting codes over F, for any prime power gq.
The code parameters are

1 1 2t—1

qt]qa

for any positive integer ¢. This family is a generalisation of the
optimal self-complementary binary codes with parameters

[q2t+qt— LR gt ot 1, g g g

[2u® — u, 2t + 1,u* — u)a,

where u = 2'~'. The codes are obtained by considering a sub-
matrix of a specially constructed generalised Hadamard matrix.
The optimality of the family is confirmed by using a recently
derived generalisation of the Grey-Rankin bound when ¢ > 1,
and the Griesmer bound when ¢ = 1.

Index Terms—Generalised Hadamard matrix, Grey-Rankin
bound.

I. INTRODUCTION

We use the usual notation (n,M,d), to denote an error
correcting code in [y of size M and minimum distance d. If
the code is a linear subspace of dimension k, then we denote
it as [n, k,d],. As this work is a generalisation of a family of
binary codes, we begin by reviewing the binary case.

Definition 1: A Hadamard matrix H is an n by n matrix
with entries in {1, —1} such that,

HHT =nlI,

where I denotes the n by n identity matrix.

It can be easily demonstrated that for a Hadamard matrix to
exist n must be a multiple of 4. It is conjectured, with strong
evidence, that a Hadamard matrix exists for all n divisible by
4.

Definition 2: A binary error correcting code C'is said to be
self-complementary if for all words x € C' we have z+1 € C,
where 1 is the all-1 vector (1,...,1).

By changing the symbols in the rows of H from 1 and -1 to
0 and 1, then adding to this set of rows the complements of the
rows and puncturing this code in one coordinate (by deleting
any column) we obtain an optimal self-complementary code
with parameters (n — 1,2n, 45 — 1). This is known as a

Hadamard code. The optimality of a self-complementary code
can be tested with the Grey-Rankin bound which states that

8d(n — d)

M< n— (n—2d)?’

provided the RHS of the inequality is positive. The Hadamard
code meets this bound with equality. A result of McGuire
[10] states that a self-complementary code meeting this bound
must be either a Hadamard code or must arise from a quasi-
symmetric design with specified intersection numbers. We do
not discuss the details of the quasi-symmetric designs here,
but we are interested in the codes they give. In [5] and [8]
there are constructions of these designs, which yield codes
with parameters

(2u? — u, 8u?, u? — u)a,

for u = 2™, m an integer, m > 1. These codes are believed
to exist for all even u. They have been shown to exist
whenever there exists a u times v Hadamard matrix (see [2]
and [3]). Also, there is a construction for ©v = 6 [4] but all
other cases where u is equivalent to 2 modulo 4 are open.
These constructions use the structure of Hadamard matrices
to obtain the quasi-symmetric designs and hence the codes.
When v = 271, ¢ > 1 and the codes have minimum 2-rank,
they give the linear family of codes

[2u? — u, 2t + 1,u? — uls.

This is the family of codes that we are going to generalise to
the g-ary Hamming space by using the structure of generalised
Hadamard matrices.

II. PRELIMINARIES

Definition 3: Let G be a group of order g and let A be a
positive integer. A generalised Hadamard matrix GH (g, \)
over the group G is a Ag X A\g matrix such that the pairwise
difference of any two rows of the matrix contains every
element of G exactly A times.

For more about generalised Hadamard matrices we refer the
reader to [6] .



The generalised Hadamard matrix is called normalised if
the first row and the first column consist of only the identity
element of G. In this work we consider G to be the additive
group in the finite field F¢ for ¢ > 1, where ¢ is the power of
a prime. The generalised Hadamard matrix is also considered
as a code where each row is a codeword of the code. For a
GH(g, ), we get a code of length \g, size Ag, and distance
Ag — A\

There has been more than one generalisation of the Grey
Rankin bound. In this article we are only using the most recent
one from Bassalygo, et. al. [1]. This generalised Grey-Rankin
bound is stated as follows.

Theorem 2.1: [1] Let C be an (n,M,d), code such that
it can be partitioned into trivial maximal subcodes (1, ¢, n)q.
Then the size of the code satisfies

o < Cln=d)(gd (g - 2)n)
- n—((g=Dn-qd)?

The condition that a code can be partitioned into trivial
maximal subcodes (n, ¢, n), is equivalent to the property, for
all words x € C we have z +1 € C. So this can be thought
of as a generalisation of the self-complementary property of
binary codes. Any linear code that contains the all one vector
also has this property. We also note, when ¢ = 2 this bound
reduces to the binary Grey-Rankin bound.

For an [n, k, d], linear code, the Griesmer bound gives the
length n(k,d) of the shortest linear code with dimension &
and minimum distance d.

Theorem 2.2: [11] Let C be an [n, k, d], linear code. Then

n(k,d)2d+n(k—1, M):djt m TR [q,”

In this section we show how to construct a specific Gener-
alised Hadamard matrix with parameters G H (¢*, ¢**=*) from
a GH(q"',1). The construction is achieved by considering the
GH(q%,1) as a code and then performing code operations such
as extension and concatenation.

Let H denote the normalised generalised Hadamard matrix
GH(q",1) with entries

. 0,
H(Zaj) = {O/’J'_j

where o is a primitive element of F,:. This matrix, when
considered as a codematrix, is a linear code with parameters
l¢',t,q" — 1],+. The linearity of H can be proved as follows.
; B . t .

Letr; = (0,a%,a’*t, ... ait? ~2) denote a row of the matrix
H. We let 1o = 0 denote the first row. Then observe that

. . t

(@' +a'a?)(0,1,a,...,07 72)
t

= (0,aF, aF T . okt =2)

= Tk,

III. CONSTRUCTION OF GH (¢*, ¢*'~%)

1 =0, or j =0,
1S27.7§qt_17

T+ alrj

where of = ot + alad.

The fact that H is a generalised Hadamard matrix follows
from its linearity. Consider the code Cy obtained by taking H
along with all its cosets H 431 and 3 € Fy:. The code Cp is
also linear and has parameters [¢’, 2t, ¢* — 1],+. This code is
optimal because it satisfies the generalised Grey-Rankin bound
with equality [1]. Extend the code Cx by appending an extra
element to every element of Cy; as described below. For each
i=1,...,¢" — 1, the row r; of H is extended by appending
the element o and the first row of H is extended by appending
the element 0. Similarly the row in the coset H + 81 which
is obtained from row r; of H, is extended by appending o to
it, and the row in the coset H 4 81 corresponding to o of H
is extended by appending O to it. Denote this extended code
by C;}. The following lemma gives the parameters of CE.

Lemma 3.1: The code CIJ; is an optimal nonlinear equidis-
tant code with parameters (¢° + 1, g%, ¢%) .

Proof: The extended code clearly has length ¢ + 1 and
size ¢?*. To determine the distances in the extended code we
first determine the distances in the code Cp. The distance
between elements r; + 81,7; + 5’1 of cosets H + 1 and
H+ 5’1, 8,8 €y, respectively, in Cy is given by

qtfla lfﬂzﬂla’L#‘?

¢ =1, fB#Pi#]

q, if 5#p8i=j.
Thus, the distance between elements r; + 51 and r; + 5’1 of
the extended code C;} is given by

¢, fp=pi#j
d(’l"i+61,?”j+ﬂ/1): qt> lfﬁ#ﬁ/az7é]
¢, fB#Pi=]
Hence, the code is equidistant. The code CE is optimal because

it satisfies the Plotkin bound with equality. A code with
parameters (n, M, d), satisfies the Plotkin bound if

d(ri + 1,1+ f'1) =

=i
M<|——— .
Ll —(¢—1n/q
Straightforward calculations show that the RHS is exactly q2t
for the code C;}. [ |

Next, we construct a family of generalised Hadamard
matrices GH (q*,¢*~%), for k = 1,...,t from the matrix
H = GH(q',1) and from the code Cj;. This is obtained by
concatenating the code C;} with a punctured matrix obtained
from H.

Consider a linear projection of each element (in the additive
group of F,.) of H on to the additive subgroup in Fx for any
k € {1,...,t}. This projection can be achieved by first con-
sidering the field elements as vectors, with respect to a fixed
basis, and then mapping the last ¢ — k coordinates to zero. This
gives a generalised Hadamard matrix H (k) = GH(q*,¢'~F)
[6].



We construct a matrix H~ (k) from H(k) by removing
its first column. When considered as a code H~ (k) has
parameters [¢" — 1,¢,¢" — ¢'~*],x. We concatenate H (k)
with C}; by replacing every element o' in C}; by the row r;
of H=(k),i=1,...,q"—1, and by replacing the element 0 in
Cj; by the first row of H~ (k). Denote the concatenated code
by H~ (k) o C,. Finally, extend the concatenated codematrix
H~ (k) o C}; by prepending an all-zero column to obtain the
codematrix H?(k).

Proposition 3.2: The matrix H?(k) is a generalised
Hadamard matrix GH (¢*, ¢*' ).

Proof: Since the distance between any two rows in Cj; is
q*, the two rows are equal in exactly one position. Thus, the
number of zeroes in the difference of two rows of C;; o H~ (k)
is exactly ¢'(¢q*=% —1)+¢' — 1. The extended code contributes
one extra zero to this count.

For any nonzero element, the number of such non-zero
elements in the difference of two rows of H~ (k) o Cf;
is exactly ¢'(q*~%) since H~(k) contains all the nonzero
elements equally often. This proves that the code H?(k) is
a generalised Hadamard matrix. ]

IV. CONSTRUCTION OF OPTIMAL LINEAR CODES

In this section we describe the construction of a family of
optimal linear codes with parameters

[d(qt - 1)72t + Ld(d - 1”‘17

where d = ¢* — ¢'~!. This optimal linear code is obtained

from H? = H?(1). The construction is performed by first con-
catenating a punctured code obtained from Cy with the code
H~(1). Then the resulting concatenated code is augmented
by the all-one vector.

Fix a positive integer s > d. Puncture the code Cy such that
the resulting code contains only the first s coordinates (more
generally, one may puncture it on any set of coordinates such
that the resulting code has exactly s coordinates). Denote the
punctured code by Cj;. It has parameters [s,2¢, s — 1] .

Consider the concatenation of the code Cj; with the code
H~(1). We denote the concatenated code by H~ (1) o Cj.
Since the codes H (1) and Cj; are F-linear, the concatenated
code H(1)oCj; is also a linear code over F, (see [7]). Con-
sider the code C(s) obtained by augmenting the concatenated
code by the all-one vector 1 of length s(¢* — 1). Note that
the code C(s) can also be obtained by puncturing the matrix
H?%(1) approprlately, and then augmenting it by the all-one

vector 1 € ]Fs(q . The proposition below establishes the
parameters of the code C(s).

Lemma 4.1: The code C(s) has parameters
[s(¢" —1),2t +1,(d — 1)s],,

where d = ¢' — ¢'~1. The code C(s) has five distances (in
increasing order):

(d—1)s,d(s —1),sd+ ¢' — s — d, sd, and s(¢" —1).

Proof: The distances in the code C(s) are derived from
the distances in the component codes H~ (1) and Cy7. Any two
rows of H~(1) have distance d = ¢ — ¢*~. Two rows of C};
have distance either s or s — 1. Thus two rows of H~ (1) oC};
have distance either sd or (s — 1)d. Without loss of generality
let ro be a row from H~(1)oCj; and ry be a row from the set
of codewords {c+1:ce€ H (1)oCy}. If ry =rg+ 1 then
the distance between them is s(g* — 1). Otherwise, we can
write r; = 1’ + 1, where r’ # rg. Then the distance between
the codewords is given as

s(qt — 1), if ry =rg+1,
d(ro,r1) = ¢ s(d - 1), if d(ro,r’) = s,
sd+n—s—d, ifd(rg,r')=s-1,

where the last case follows because the distance between the
vectors is (s —1)(d — 1) +n — 1. This establishes the distances
in the concatenated code C(s). The minimum distance of the
code can be inferred from the inequality s(d — 1) < (s —1)d,
for s > d. |

The optimal linear code is now obtained by reducing the
number of distances in the code to four distances. This is
effected by choosing s = d. It now has parameters

[ gt —g?t
Denote this linear code by C = C(d). Below we prove the
optimality of the code by comparing it to the generalised Grey-
Rankin bound for ¢t > 1, and to the Griesmer bound for ¢ = 1.
When ¢t = 1 the code has parameters;

1_qt,2t+1,q2t+q2t72+qt71_2q2t71_qt]q7

[¢* —2¢+1,3,¢° — 3¢+ 2],

Theorem 4.2: For a linear code containing the all one
vector, the code C = C(d) is optimal when ¢ > 1. When
t =1, C(d) is an optimal linear code.

Proof: Let n = ¢ and d = n —n/q. Let C be any linear
code with parameters [N, K, D], where N = d(n—1),D =
d(d — 1), and K is the dimension of the code. Let M be the
size of C.

We first prove the result for ¢ > 1. Substituting the values
of N, D from the parameters of C' gives us the generalised
Grey-Rankin upper bound

oy < Al —1) —d(d ~ 1)) (gd(d ~ 1) — (g — 2)d(n — 1)
- d(n—1) = ((g— Dd(n — 1) — gd(d — 1))
qzdn(n— 2)/q

n/qg—1

=qn® <q - (1 _le=2-1) _i)_(qq_ D)) .

We have used the fact that d = n — n/q in arriving at the
above expression. Also note that n = ¢* and hence the term
multiplying gn? = ¢?'*1 is strictly less than g. To show this,
substitute n = ¢’ and note that for t > 2,

(¢—2) (g—1)

<1
q ¢ '-1




For the linear code C with dimension K = 2t+1, it is optimal
if no larger linear code with dimension 2t + 2 can be found.
The generalised Grey-Rankin bound thus proves the optimality
of C.

For ¢t = 1, we use the Griesmer bound and show that C
satisfies the Griesmer bound with equality. Note that K =
2t +1 = 3. To satisfy the Griesmer bound with equality we
need to show that

vene[2)-[2]

With D = (¢—1)(¢—2) and N = (¢—1)? it is readily verified
that the RHS of the above equation is (¢—1)(¢—2)+(¢—2)+1
which equals the LHS. [ |
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