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Abstract—We study q-ary codes with distance defined by a
partial order of the coordinates of the codewords. Maximum
Distance Separable (MDS) codes in the poset metric have been
studied in a number of earlier works. We consider codes that are
close to MDS codes by the value of their minimum distance. For
such codes, we determine their weight distribution, and in the
particular case of the “ordered metric” characterize distributions
of points in the unit cube defined by the codes. We also give some
constructions of codes in the ordered Hamming space.

I. INTRODUCTION

A set of points C = {c1, . . . , cM} in the q-ary n-
dimensional Hamming space Fn

q is called a Maximum Dis-
tance Separable (MDS) code if the Hamming distance be-
tween any two distinct points of C satisfies d(ci, cj) ≥ d
and the number of points is M = qn−d+1. By the well-
known Singleton bound of coding theory, this is the maximum
possible number of points with the given separation. If C is an
MDS code that forms an Fq-linear space, then its dimension k,
distance d and length n satisfy the relation d = n−k+1. MDS
codes are known to be linked to classical old problems in finite
geometry and to a number of other combinatorial questions
related to the Hamming space [13]. At the same time, the
length of MDS codes cannot be very large; in particular, in
all the known cases, n ≤ q + 2. This restriction has led to
the study of classes of codes with distance properties close to
MDS codes, such as t-th rank MDS codes [16], near MDS
codes [4] and almost MDS codes [3]. The distance of these
codes is only slightly less than n − k + 1, and at the same
time they still have many of the structural properties associated
with MDS codes.

In this paper we extend the study of near MDS (NMDS)
codes to the case of the ordered Hamming space and more
generally, to poset metrics. The ordered Hamming space was
introduced independently by Niederreiter [11] for the purpose
of studying uniform distributions of points in the unit cube,
and by Rosenbloom and Tsfasman [12] for a study of one
generalization of Reed-Solomon codes (the ordered distance
is therefore sometimes called the NRT distance). A particular
class of distributions in Un = [0, 1)n, called (t,m, n)-nets,
defined by Niederreiter in the course of his studies, presently
forms the subject of a large body of literature. MDS codes in
the ordered Hamming space and their relations to distributions
and (t,m, n)-nets have been extensively studied [12], [14],
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[5], [7]. The ordered Hamming space was further generalized
by Brualdi et al. in [2] which introduced metrics on strings
defined by arbitrary partially ordered sets, calling them poset
metrics.

The relation between MDS and NMDS codes in the ordered
metric and distributions is the main motivation of the present
study. As was observed by Skriganov [14], MDS codes
correspond to optimal uniform distributions of points in the
unit cube. The notion of uniformity is rather intuitive: an
allocation of M points forms a uniform distribution if every
measurable subset A ⊂ Un contains a vol(A) proportion
of the M points (in distributions that arise from codes, this
property is approximated by requiring that it hold only for
some fixed collection of subsets). Skriganov [14] observes
that distributions that arise from MDS codes are optimal in
some well-defined sense. In the same way, NMDS codes
correspond to distributions that are not far from optimal (they
are characterized exactly below).

The rest of the article is organized as follows. In the next
section we provide basic definitions and some properties of
near-MDS codes. We will also have a chance to discuss gener-
alized Hamming weights of Wei [16] in the poset metric case.
In Section III we show a relationship between distribution of
points in the unit cube and NMDS codes. In Section IV we
determine the weight distribution of NMDS codes, and finally
in Section V, we provide some constructions of NMDS codes
in the ordered Hamming space.

II. DEFINITIONS AND BASIC PROPERTIES

A. Poset metrics

We begin with defining poset metrics on q-ary strings of
a fixed length and introduce the ordered Hamming metric as
a special case of the general definition. Entries of a string
x = (x1, x2, . . . ) are indexed by a finite set N which we call
the set of coordinates. Let

−→
P be an arbitrary partial order (≤)

on N. Together N and
−→
P form a poset. An ideal of the poset

is a subset I ⊂ N that is “downward closed” under the ≤
relation, which means that the conditions i, j ∈ N , j ∈ I and
i ≤ j imply that i ∈ I . For the reasons that will become clear
below, such ideals will be called left-adjusted (l.a.).

A chain is a linearly ordered subset of the poset. The dual
poset

←−
P is the set N with the same set of chains as

−→
P , but

the order within each of them reversed. In other words j ≤ i

in
←−
P if and only if i ≤ j in

−→
P . An ideal in the dual poset will



be termed right-adjusted (r.a.). For a subset S ⊆
−→
P we denote

by 〈S〉 = 〈S〉−→
P

the smallest
−→
P -ideal containing the set S (we

write S ⊆
−→
P to refer to a subset S ⊆ N whose elements are

ordered according to
−→
P ). The support of a sequence x is the

subset suppx ⊆ N formed by the indices of all the nonzero
entries of x. The set 〈suppx〉 ⊆

−→
P will be called the l.a.

support of x. The r.a. support is defined analogously.
Definition 2.1: (Brualdi et al. [2]) Let

−→
P be a poset defined

on N and let x, y ∈ F|N |q be two strings. Define the weight
of x with respect to

−→
P as w(x) = 〈suppx〉, i.e., the size

of the smallest
−→
P -ideal that contains the support of x. The

distance between x and y is defined as d−→
P

(x, y) = w(x−y) =
|〈supp(x− y)〉|.

A code C of minimum distance d is a subset of F|N |q such
that any two distinct vectors x and y of C satisfy d−→

P
(x, y) ≥ d.

It is similarly possible to consider codes whose distance is
measured relative to

←−
P . Given a linear code C ⊂ F|N |q its dual

code C⊥ is the set of vectors {y ∈ F|N |q : ∀x∈C

∑
i xiyi = 0}.

The weights in the dual code C⊥ are considered with respect
to the dual poset

←−
P .

A subset of F|N |q is called an orthogonal array of strength
t and index θ with respect to

−→
P if any t l.a. columns contain

any vector z ∈ Ft exactly θ times. In particular, the dual of a
linear poset code is also a linear orthogonal array.

For instance, the Hamming metric is defined by the partial
order

−→
P which is a single antichain of length n = |N | (no two

elements are comparable). Accordingly, the distance between
two sequences is given by the number of coordinates in which
they differ. In this case,

−→
P =

←−
P .

B. Ordered Hamming metric

The ordered Hamming metric is defined by a poset
−→
P which

is a disjoint union of n chains of equal length r. Since we work
with this metric in later sections of the paper, let us discuss
it in more detail. In this case N is a union of n blocks of
length r, and it is convenient to write a vector (sequence) as
x = (x11, . . . , x1r, . . . , xn1, . . . , xnr) ∈ Fr,n

q . According to
Definition 2.1, the weight of x is given by

w(x) =
n∑

i=1

max(j : xij 6= 0).

For a given vector x let ei, i = 1, . . . , r be the number
of r-blocks of x whose rightmost nonzero entry is in the ith
position counting from the beginning of the block. The r-
vector e = (e1, . . . , er) will be called the shape of x. For
brevity we will write

|e| =
∑

i

ei, |e|′ =
∑

i

iei, e0 = n− |e|.

For I = 〈suppx〉 we will denote the shape of the ideal I as
shape(I)= e. By analogy with the properties of ideals in the
ordered Hamming space, we use the term “left adjusted” for
ideals in general posets

−→
P .

An (nr,M, d) ordered code C ⊂ Fr,n
q is an arbitrary subset

of M vectors in Fr,n
q such that the ordered distance between

any two distinct vectors in C is at least d. If C is a linear code
of dimension k over Fq and minimum ordered distance d, we
will denote it as an [nr, k, d] code. The dual of C, denoted as
C⊥, is defined as C⊥ = {x ∈ Fr,n

q : ∀c∈C

∑
i,j xijcij = 0}.

The distance in C⊥ is derived from the dual order
←−
P , i.e.,

from the r.a. ideals.
The notion of orthogonal arrays in the ordered Hamming

space is derived from the general definition. They will be
called ordered orthogonal arrays (OOAs) below. We write
(t, n, r, q) OOA for an orthogonal array of strength t in Fr,n

q .
Combinatorics of the ordered Hamming space and the duality
between codes and OOAs was studied in detail by Martin and
Stinson [9], Skriganov [14], and the present authors [1].

C. NMDS poset codes

We begin our study of NMDS codes in the poset space
with several definitions that are generalized directly from the
corresponding definitions in the Hamming space [16], [4].
The t-th generalized poset weight of a linear [n, k] code C

is defined as

dt(C) , min{|〈supp D〉| : D is an [n, t] subcode of C},

where supp D is the union of the supports of all the vectors
in D. Note that d1(C) = d, the minimum distance of the code
C. Generalized poset weights have properties analogous to the
well-known set of properties of generalized Hamming weights.

Lemma 2.2: Let C be a linear [n, k] poset code in Fn
q . Then

1) 0 < d1(C) < d2(C) < · · · < dk(C) ≤ n.
2) Generalized Singleton bound: dt(C) ≤ n−k+t, ∀t ≥ 1.
3) If C⊥ is the dual code of C then

(n+ 1− {d1(C⊥), d2(C⊥), . . . , dn−k(C⊥)})
∪ {d1(C), d2(C), . . . , dk(C)} = {1, . . . , n}. (1)

4) Let H be the parity check matrix of C. Then dt(C) = δ
if and only if

a) Every δ − 1 l.a. columns of H have rank at least δ − t.
b) There exist δ l.a. columns of H with rank exactly δ− t.
Definition 2.3: A linear code C[n, k, d] is called NMDS if

d(C) = n− k and d2(C) = n− k + 2.
The next set of properties of NMDS codes can be readily

obtained as generalizations of the corresponding properties of
NMDS codes in the Hamming space [4].

Lemma 2.4: Let C ⊆ Fn
q be a linear [n, k, d] code in the

poset
−→
P .

1) C is NMDS if and only if
a) Any n − k − 1 l.a. columns of the parity check

matrix H are linearly independent.
b) There exist n − k l.a. linearly dependent columns

of H .
c) Any l.a. n− k + 1 columns of H are full ranked.

2) If C is NMDS, so is its dual C⊥.
3) C is NMDS if and only if d(C) + d(C⊥) = n.
4) If C is NMDS then there exists an NMDS code with

parameters [n − 1, k − 1, d] and an NMDS code with
parameters [n− 1, k, d].



Lemma 2.5: Let C be a linear poset code in
−→
P with distance

d and let C⊥ be its dual code. Then the matrix M whose rows
are the codewords of C⊥ forms an orthogonal array of strength
d− 1 with respect to

−→
P .

Proof: Follows because (1), C⊥ is the linear span of the
parity-check matrix H of C; and (2), any d − 1 l.a. columns
of H are linearly independent.

III. NMDS CODES AND DISTRIBUTIONS

In this section we prove a characterization of NMDS poset
codes and then use this result to establish a relationship
between NMDS codes in the ordered Hamming space Fr,n

q

and uniform distributions of points in the unit cube Un. In our
study of NMDS codes in the following sections, we analyze
the properties of the code simultaneously as a linear code and
as a linear orthogonal array.

Define the I-neighborhood of a poset code C with respect
to an ideal I as

BI(C) =
⋃
c∈C

BI(c),

where BI(x) = {v ∈ Fn
q : supp(v − x) ⊆ I}. We will say

that a linear k-dimensional code C forms an I-tiling if there
exists a partition C = C1 ∪ · · · ∪ Cqk−1 into equal parts such
that the I-neighborhoods of its parts are disjoint. If in addition
the I-neighborhoods form a partition of Fn

q , we say C forms
a perfect I-tiling.

Theorem 3.1: Let C ⊆ Fn
q be an [n, k, d] linear code in the

poset
−→
P . C is NMDS if and only if

1) For any I ⊂
−→
P , |I| = n − k + 1, the code C forms a

perfect I-tiling.
2) There exists an ideal I ⊂

−→
P , |I| = n−k with respect to

which C forms an I-tiling. No smaller-sized ideals with
this property exist.

Proof: Let C be NMDS and let I be an ideal of size
n − k + 1. Let H[I] be the submatrix of the parity-check
matrix H of C obtained from H by deleting all the columns
not in I . Since rk(H[I]) = n−k, the space ker(H[I]) is one-
dimensional. Let C1 = ker(H(I)) and let Cj be the jth coset
of C1 in C, j = 2, . . . , qk−1. The code C forms an orthogonal
array of strength k − 1 and index q in

←−
P . Therefore, every

vector z ∈ Fk−1
q appears exactly q times in the restrictions of

the codevectors c ∈ C to the coordinates of J = Ic. Thus,
c′[J ] = c′′[J ] for any two vectors c′, c′′ ∈ Ci, i = 1, . . . , qk−1

and c′[J ] 6= c′′[J ] c′ ∈ Ci, c
′′ ∈ Cj , 1 ≤ i < j ≤ qk−1.

This implies that C forms a perfect I-tiling, which proves
assumption 1 of the theorem. To prove assumption 2, repeat
the above argument taking I to be the support of a minimum-
weight codeword in C.

To prove the converse, let I ⊆
−→
P , |I| = n−k+1 be an ideal

and let C1, . . . ,Cqk−1 be a partition of C with |Ci| = q for all i,
that forms a perfect I−tiling. This implies that c′[Ic] 6= c′′[Ic],
c′ ∈ Ci, c

′′ ∈ Cj , 1 ≤ i < j ≤ qk−1. In other words, C forms
an orthogonal array with respect to

←−
P of index q and strength

k − 1. We conclude that d(C⊥) = k or k + 1. If it is the
latter, then C⊥ is MDS with respect to

←−
P and so is C with

respect to
−→
P , in violation of assumption 2. So d(C⊥) = k and

d(C) ≤ n− k. If the inequality is strict, there exists an ideal
I of size < n− k that supports a one-dimensional subcode of
C. Then C forms an I-tiling which contradicts assumption 2.

It remains to prove that d2(C) = n − k + 2. Assume the
contrary, i.e., that there exists a 2-dimensional subcode B ⊂ C

whose l.a. support forms an ideal I ⊂
−→
P of size n − k + 1.

The q2 vectors of B all have zeros in Ic which contradicts the
fact that C forms an orthogonal array of index q.

Next, we use this characterization to relate codes in the
ordered Hamming space Fr,n

q to distributions. An idealized
uniformly distributed point set C would satisfy the property
that for any measurable subset A ⊂ Un, 1

|C|
∑

x∈C 1(x ∈
A) = vol(A). Distributions that we consider, and in particular
(t,m, n)-nets, approximate this property by restricting the
subsets A to be boxes with sides parallel to the coordinate
axes.

Let E ,
{∏n

i=1

[
ai

qli
, ai+1

qli

)
: 0 ≤ ai < qli , 0 ≤ li ≤ r, 1 ≤

i ≤ n
}

be a collection of elementary intervals in the unit cube
Un = [0, 1)n. An arbitrary collection of qk points in Un is
called an [nr, k] distribution in the base q (with respect to E).
A distribution is called optimal if every elementary interval of
volume q−k contains exactly one point [14]. A related notion
of (t,m, n) nets, introduced by Niederreiter [11], is obtained if
we remove the upper bound on li (i.e., allow that 0 ≤ li <∞)
and require that every elementary interval of volume qt−m

contain exactly qt points.
An ordered code gives rise to a distribution of points

in the unit cube via the following procedure. A codevector
(c11, . . . , c1r, . . . , cn1, . . . , cnr) ∈ Fr,n

q is mapped to x =
(x1, . . . , xn) ∈ Un by letting

xi =
r∑

j=1

cijq
j−r−1, 1 ≤ i ≤ n. (2)

In particular, an (m − t, n, r, q) OOA of index qt and size
qm corresponds to a distribution in which every elementary
interval of volume qt−m contains exactly qt points, and an
(m− t, n,m− t, q) OOA of index qt and size qm gives rise
to a (t,m, n)-net [8], [10].

Proposition 3.2: (Skriganov [14]) An [nr, k, d] MDS code
in the ordered metric exists if and only if there exists an
optimal [nr, k] distribution.
Skriganov [15] also considers the concept of nearly-MDS
codes whose distance asymptotically tends to the distance of
MDS codes, and shows how these codes can give rise to
distributions.

The next theorem whose proof is immediate from Theorem
3.1 relates ordered NMDS codes and distributions.

Theorem 3.3: Let C be a linear [nr, k, d] code in Fr,n
q and

let P (C) be the corresponding set of points in Un. Then C is
NMDS if and only if

1) Any elementary interval of volume q−(k−1) has exactly
q points of P (C).

2) There exists an elementary interval
∏n

i=1

[
0, q−li

)
of

volume q−k containing exactly q points and no smaller



elementary intervals of this form containing exactly q
points exist.

Corollary 3.4: An [nr, k, d] NMDS code C in the ordered
Hamming space forms a (k− 1, n, r, q) OOA of index q. The
corresponding distribution P (C) ⊂ Un forms a (k − r, k, n)-
net for k − 1 ≥ r.

Remark 3.5: Distributions of points in the unit cube ob-
tained from NMDS codes have properties similar to those
of distributions obtained from MDS codes. In particular, the
points obtained from an [nr, k, d] MDS code in Fr,n

q satisfy
part (1) of Theorem 3.3 and give rise to a (k− r, k, n)-net for
k ≥ r [14].

IV. WEIGHT DISTRIBUTION OF NMDS CODES

Let Ω(I) be the set of maximal elements of an ideal I and
let Ĩ , I \ Ω(I).

Let C be an NMDS [n, k, d] linear poset code. Let AI ,
{x ∈ C : 〈suppx〉 = I} be the number of codewords with l.a.
support exactly I and let As =

∑
I:|I|=sAI .

Theorem 4.1: The weight distribution of C has the follow-
ing form:

As =
∑
I∈Is

s−d−1∑
l=0

(−1)l

(
|Ω(I)|
l

)
(qs−d−l − 1)+

+ (−1)s−d
∑
I∈Is

∑
J∈Id(I),J⊇Ĩ

AJ , n ≥ s ≥ d, (3)

where Is , {I ⊆
−→
P : |I| = s}, Is(I) , {J : J ⊆ I, |J | = s}.

PROOF. The computation below is driven by the fact that ideals
are fixed by the sets of their maximal elements.

The number of codewords of weight s is given by As =
| ∪I∈Is C ∩ SI |, where SI , {x ∈ Fn

q : 〈suppx〉 = I} is the
sphere with l.a. support exactly I . The above expression can
be written as∣∣∣ ⋃

I∈Is

C ∩ SI

∣∣∣ =
∑
I∈Is

(
|C ∩B∗I | −

∣∣ ⋃
J∈Is−1(I)

C ∩B∗J
∣∣),

where BI , {x ∈ Fn
q : 〈suppx〉−→

P
⊆ I} and B∗I , BI \0. We

determine the cardinality of the last term using the inclusion-
exclusion principle.∣∣∣ ⋃

J∈Is−1(I)

C ∩B∗J
∣∣∣ =

∑
J∈Is−1(I)

|C ∩B∗J |+ · · ·+

+ (−1)|Ω(I)|−1
∑

J1 6=···6=J|Ω(I)|∈Is−1(I)

∣∣∣∣C ∩ (⋂
i

B∗Ji

)∣∣∣∣. (4)

Since C⊥ has minimum distance k, C forms an orthogonal
array of strength k− 1 with respect to the dual poset

←−
P . This

provides us with an estimate for each individual term in (4)
as described below. For distinct J1, . . . , Jl ∈ Is−1(I), we let
J , ∩l

i=1Ji. Using the fact that J does not contain l maximal
elements of I, we get∣∣∣{{J1, . . . , Jl} : Ji distinct, Ji ∈ Is−1(I)

}∣∣∣ =
(
|Ω(I)|
l

)
.

For any s ≥ d + 1 consider the complement Ic of an ideal
I ∈ Is. Since |Ic| ≤ n− d− 1 = k − 1, the code C supports
an orthogonal array of strength n − s and index qs−d in the
coordinates defined by Ic. Since ∩l

i=1B
∗
Ji

= B∗J and since B∗J
does not contain the 0 vector, we obtain∣∣∣C ∩ ( l⋂

i=1

B∗Ji

)∣∣∣ = qs−d−l − 1, 1 ≤ l ≤ s− d− 1.

Finally, for l = s− d we obtain |C ∩ (∩l
i=1B

∗
Ji

)| = AJ . Thus∣∣∣∣ ⋃
J∈Is−1(I)

C∩B∗J
∣∣∣∣ =

s−d−1∑
l=1

(−1)l−1

(
|Ω(I)|
l

)
(qs−d−l−1)+

+
∑

J∈Id(I),J⊇Ĩ

(−1)s−d−1AJ .

As a corollary of the above theorem, we obtain the weight
distribution of NMDS codes in the ordered Hamming space
Fr,n

q . By definition, the number of vectors of ordered weight
s in a code C ∈ Fr,n

q equals As =
∑

e:|e|′=sAe, where Ae is
the number of codevectors of shape e.

Corollary 4.2: The weight distribution of an ordered
NMDS code C ∈ Fr,n

q is given by

As =
s−d−1∑

l=0

(−1)l

 ∑
e:|e|′=s

(
|e|
l

)(
n

e0, . . . , er

) (qs−d−l−1)

+ (−1)s−d
∑

e:|e|′=d

Ns(e)Ae, s = d, d+ 1, . . . , n, (5)

where

Ns(e) ,
∑

f :|f |′=s

(
er−1

fr − er

)(
er−2

(fr + fr−1)− (er + er−1)

)
×

· · · ×
(

e0

|f | − |e|

)
.

Proof: Recall that the shape of an ideal I is shape(I) =
e = (e1, . . . , er), where ej , j = 1, . . . , r is the number of
chains of length j contained in I . We obtain |Ω(I)| = |e| and∑

I∈Is

(
|Ω(I)|
l

)
=

∑
e:|e|′=s

(
|e|
l

)(
n

e0, . . . , er

)
.

To determine the last term in (3), we rewrite it as∑
I∈Is

∑
J∈Id(I),J⊇Ĩ

AJ =
∑
J∈Id

|{I ∈ Is : Ĩ ⊆ J ⊆ I}|AJ

=
∑

e:|e|′=d

Ns(e)
∑

J:shape(J)=e

AJ ,

where Ns(e) = |{I ∈ Is : Ĩ ⊆ J ⊆ I, J fixed, shape(J) =
e}|.

Clearly,
∑

J:shape(J)=eAJ = Ae. To determine Ns(e) let
J be an ideal as shown in Fig. 1. The ideals I which satisfy the
constraints in the set defined by Ns(e) have the form as shown
in Fig. 1. Letting f = shape(I), we note that the components
of the shape f must satisfy fr ≥ er, fr +fr−1 ≥ er +er−1 ≥



Fig. 1. To the proof of Corollary 4.2

fr, . . . , f1+· · ·+fr = |f | ≥ |e| = e1+· · ·+er ≥ f2+· · ·+fs,
and |f |′ = s. It is now readily seen that Ns(e) is as stated in
Cor. 4.2.

Remark: For r = 1 we obtain |e| = |e|′ = e1 = d, |f | =
f1 = s and Ns(e) =

(
n−d
s−d

)
. Thus one can recover the

expression for the weight distribution of an NMDS code in
Hamming space as stated in [4].

Unlike the case of poset MDS codes [7], the weight dis-
tribution of NMDS codes is not completely known until we
know the number of codewords with l.a. support J for every
ideal of weight J of size d. In particular, for NMDS codes
in the ordered Hamming space we need to know the number
of codewords of every shape e with |e|′ = d. This highlights
the fact that the combinatorics of codes in the poset space
(ordered space) is driven by ideals (shapes) and their support
sizes, and that the weight distribution is a derivative invariant
of those more fundamental quantities.

V. CONSTRUCTIONS OF NMDS CODES

In this section we present some simple constructions of
NMDS codes in the ordered Hamming space for the cases
n = 1, 2. We are not aware of any general code family of
NMDS codes for larger n.

n=1: For n = 1 the construction is quite immediate once
we recognize that an NMDS [r, k, d] code is also an OOA
of r.a. strength k − 1 and index q. Let Il denote the identity
matrix of size l. Let x = (x1, . . . , xr) be any vector of l.a.
weight d = r − k, i.e. xd 6= 0 and xl = 0, l = d + 1, . . . , r.
Then the following matrix of size k × r generates an NMDS
code with the above parameters[

x1 . . . xd 0 0
M 0 Ik−1

]
, (6)

where the 0s are zero vectors (matrices) of appropriate dimen-
sions and M ∈ F(k−1)×d

q is any arbitrary matrix.

n=2: Let Dl =
[

0 ... 1
... . .

. ...
1 ... 0

]
be the l× l matrix with 1 along

the inverse diagonal and 0 elsewhere. Let u and v be two
vectors of length r in Fr,1

q and l.a. weights r− k1 and r− k2

respectively and let K = k1 +k2. The following two matrices

correspond to the two blocks of the generator matrix of a
[2r,K, 2r −K] linear NMDS code in Fr,2

q .
u1 . . . ur−k1−1 ur−k1 0 0

0 0 1 0
0 0 0 Ik1−1

Er(k2, k1) 0 0 0

 ,

v1 . . . vr−k2−1 vr−k2 0 0

0 0 1 0
Er(k1, k2) 0 0 0

0 0 0 Ik2−1

 ,
where Er(i, j) is an (i− 1)× (r − j − 1) matrix given by:

Er(i, j) =



[
Dr−j−1

0(i+j−r)×(r−j−1)

]
, i+ j > r,

[
0(i−1)×(r−i−j) Di−1

]
, i+ j ≤ r.

From the form of the generator matrix it can be seen that
any K − 1 r.a. columns of the above matrix are linearly
independent. But the last k1 and k2 columns from the first
and the second blocks respectively are linearly dependent.
This implies that it forms an OOA of r.a. strength exactly
K − 1. Hence the dual of the code has distance K. Finally,
the minimum weight of any vector produced by this generator
matrix is 2r−K. Hence by Lemma 2.4, this matrix generates
an NMDS code.

REFERENCES

[1] A. Barg and P. Purkayastha, Bounds on ordered codes and orthogonal
arrays, Moscow Math. Journal 9 (2009), no. 2, 211–243.

[2] R. A. Brualdi, J.S. Graves, and K. M. Lawrence, Codes with a poset
metric, Discrete Math. 147 (1995), no. 1-3, 57–72.

[3] M. de Boer, Almost MDS codes, Des. Codes Crypt. 9 (1996), 143–155.
[4] S. Dodunekov and I. Landgev, Near-MDS codes, J. of Geometry 54

(1995), no. 1, 30–43.
[5] S. T. Dougherty and M. M. Skriganov, Maximum distance separable

codes in the ρ metric over arbitrary alphabets, Journal of Algebraic
Combinatorics 16 (2002), 71–81.

[6] A. Faldum and W. Willems, A characterization of MMD codes, IEEE
Trans. Inform. Theory 44 (1998), no. 4, 1555–1558.

[7] J. Y. Hyun and H. K. Kim, Maximum distance separable poset codes,
Des. Codes Cryptogr. 28 (2008), no. 3, 247–261.

[8] K. M. Lawrence, A combinatorial characterization of (t,m, s)-nets in
base b, J. Combin. Designs 4 (1996), 275–293.

[9] W. J. Martin and D. R. Stinson, Association schemes for ordered
orthogonal arrays and (T,M, S)-nets, Canad. J. Math. 51 (1999), no. 2,
326–346.

[10] G. L. Mullen and W. Ch. Schmid, An equivalence between (t,m, s)-
nets and strongly orthogonal hypercubes, Journal of Combin. Theory,
Ser. A 76 (1996), 164–174.

[11] H. Niederreiter, Low-discrepancy point sets, Monatsh. Math. 102 (1986),
no. 2, 155–167.

[12] M. Yu. Rosenbloom and M. A. Tsfasman, Codes for the m-metric,
Problems of Information Transmission 33 (1997), no. 1, 45–52.

[13] R. Roth, Introduction to coding theory, Cambridge University Press,
Cambridge, 2006.

[14] M. M. Skriganov, Coding theory and uniform distributions, Algebra i
Analiz 13 (2001), no. 2, 191–239, English translation in St. Petersburg
Math. J. 13 (2002), no. 2, 301–337.

[15] M. M. Skriganov, On linear codes with large weights simultaneously
for the Rosenbloom-Tsfasman and Hamming metrics, J. of Complexity
23 (2007), 926–936

[16] V. Wei, Generalized Hamming weights for linear codes, IEEE Trans.
Inform. Theory 37 (1991), no. 5, 1412–1418.


