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Abstract— We prove several new bounds on ordered codes and
ordered orthogonal arrays. We also show that the eigenvaliseof — projection on any left-adjusted set ©b€oordinates contains all
the ordered Hamming scheme are the multivariable Krawtcholk  the ¢* rows an equal number, say of times. The parameter
polynomials and establish some of their properties. is called theindex of C. It follows that A/ = \¢*. Sometimes
OOAs are also called hypercubic designs.
) o The study of OOAs is motivated by the problem of design-
_A. The NRT metric spacelet Q be a finite alphabet of g yniformly distributed sets of points in the-dimensional
size ¢ viewed as an additive group mad Consider the set it cuper,, for use in numerical integration. For a continuous
Q"™ of vectors of dimensionn over Q. A vectorz will g nction f of bounded variation, the error of replacing the
be written as a concatenation afblocks of Igngthr each, integral overk,, with the sumM~13" _ - f(z) over a set\
@ = {T11,. ., T1r;- -3 T, o} FOT @ given vector o A7 points in K, (a “net”) can be bounded via the deviation
let e;,4 = 1,...,r be the number of-blocks of z whose o A7 from the uniform distribution. Low-discrepancy point
rightmost nonzero entry is in thih position counting from gatg [13] give rise to the notion of @, m, s)-net which can
the beginning of the block. The-vectore = (e1,...,e.) pe equivalently defined as an OQA — t,s,m — t,q) with
will be called theshape of . For two vectorsz,y € Q™" )\ _ 4t (see, e.g., [12]). Therefore bounds on OOAs are of
let us writez ~. y if shape(z —y) = e. A shape vector jnierest for estimating the error of Monte-Carlo integati
e = (e1,...,e,) defines a partition of a numbe¥ < n into oy g |n this context ordered codes arise as a dual object
a sum ofr nonnegative parts. Led,, . = {e € (Z1 U{0})":  of OOAs within the frame of Delsarte’s theory [6], although
Z?_ e; < n} be the set of all such partitions. For brevity W§15] defined them independently of other problems.
write Apart from the combinatorial motivation, ordered codes
le| = Zei, le| = Ziei, o =n— |el. figure in recent algebraic list decoding algorithms of Reed-
; ; Solomon codes [14]. -
C. Notation.Let v, = |[{x € H : shape(x) = e}|. We have

|. INTRODUCTION

Let x € Q™" be a vector of shape. Define a weight
function (norm) on Q™" by settingw(xz) = |e/’ and let 0. — n (g — 1)lelglel’=lel 1)
d.(xz,y) = w(x — y) denote the metric induced by this ¢ €0,€1,...,6En '
norm. We call the functiow,. the ordered weight. It was first
. ) T : Let A(z) = (¢ — 1)z(2" — 1)/(g(z — 1)) and letzy = zo(x)
introduced by Niederreiter [13] and later, independertily, satisfv the equation:r(1 + A — ¢“15" ;i Define the
Rosenbloom and Tsfasman [15]. The &¥t™ together with i quationr(1 + A(z)) a 20" I

this metric will be called thg)rder_eg Hamming space (the function 1

NRT space) and denoted by = H(q,n,r). Note that the Hy,(z) = 2(1 —log, 20) + ~log, (1 + A(20)).

caser = 1 corresponds to the usual Hamming distance on "

Q™. Below the value of- is assumed to be fixed. In the caser = 1 we write hy(z) instead ofH, (), where

B. Ordered codes and ordered orthogonal arrays (OQ¥s). hg(z) = —zlog, #5 — (1 — z)log,(1 — z). Let
(n,M,d) ordered code C C H is an arbitrary subset of 1
M vectors inQ™™ such that the minimum ordered distance derit =1 — = Zq—i =1-
between any two distinct vectors @ is d. The numberR = [
log, M/rn is called therate of the codeC'. In the asymptotic
results below we assume that— co andd/n — rd.

1 ¢ -1
rq" q—l'

()

Let Sy be a sphere of radius= drn in H. Its volume equals

Let us call a subset of coordinat&sc {1,...,rn} left- |Sal = Ze:\el/:vl ve- By [15], this quantity satisfies
adjusted if with any coordinateér+;,0 <i<n—-1,1<j<r
. . . . . . . -1 Hq r((s) 0 < o < (SCI'it
it also contains all the coordinatés + 1,...,ir +j — 1) of lim (nr)”" log, |Sa| = ’ (3)
the same block. A subset ¢ Q"",|C| = M is called a e 1 Oerit <0 < 1.

(t,n,r,q) ordered orthogonal array (OOA) of strengtht if its D. Bounds on ordered codes and OOAs\umber of bounds
« Supported in part by NSF grants CCFO515124, CCFO635271,bgnd on the size of ordered codes and OOAs were established in
NSA grant H98230-06-1-0044. ' ' [15], [9], [11], [5], [12]. By the GiIbe_r)t—Varshamov bound ]

T Supported in part by NSF grant CCR0515124. there exists an(n, M) codeC' € H with NRT distanced



whose parameters satisty/ Zf;ol |Si| > ¢"". Asymptoti-
cally, we obtainR > 1 — H,,(0) for 0 < § < deit. The
same paper also proves the Plotkin bound
d
M< —
~ d — nrigit
and the Singleton bound.

Dual bounds (i.e., lower bounds on the size of OOAS) were

established in [11], [12]. In particular, &t be a(¢,n,r,q)
OOA. |f t + 1 Z n/]aécrit then

nrdcrit
t+1

012 (1~

(dual Plotkin bound, [12]). A dual Hamming bound (Ra

bound) on OOAs was proved in [11].

Il. A BASSALYGO-ELIAS BOUND ON CODES
Theorem 2.1: Let C be an(n, M, d) code. Then
. 1
min
0<w<rn | Sy, |(dn — 2wn + X
Proof : We will rely upon the next lemma.
Lemma 2.2: Let C' C H |C| =

M < q™dn

T crit )

M < dn

Proof : Let C* be a projection ofC 'on the ith block of
coordinates. For a vectar € Q" let 2" = (z,_p11,...,2,)
be its suffix of length.. Givenz € C, we denote by’ € C?
its 5th block and writez*" to refer to theh-suffix of x*. For

i=1,....,nh=1,....,rc € Q" let /\?7C =zt € C":
" = c}|. We have
d (@' y')=r—> > " e)sy",c). (4

h=1cecQh
Compute the sum of all distances in the code as follows:

X:d(my_m"M2 ZZZ(S bh )
xz,ycC it yt h=1ceQh
=nrM? — zn: Z > (A2 (5)
i=1 h=1ccQh

To bound above the right-hand side, we need to find
minimum of the quadratic form

F=> > > QL+ > (M)
i=1 h=1 ccQhr\{0} i=1 h=1
under the constraints
Z?:l 22:1 )‘?.,0 = M(nr —w)

S (6)

Decor Ae (1<h<r 1<i<n)

Critical points of F' in the intersection of these hyperplanes

together with (6), satisfy the equations
2A0e + Bin =0 1<i<ml<h<rceQ"\{0}
M+ a+Bin=0 1<i<nl<h<r

o, ﬁi,h c R.
(7)

M be a code all of whose
vectors have weighty and are at least distandeapart. Then

The system (6)-(7) has a unique solution for the variables

A, Bin, o in particular,

1 w
Al —M[(——1) +1}, h=1,...ri=1,....n
0 qh nrdcrit
Mw
h . h
Y= , h=1,...,ri=1,...,n,c € F'\{0}.
e qhnrécrit nt e q\{}

To verify that this critical point is in fact a minimum, obser
that the formF' is convex because its Hessian matrix2is
and is positive definite (both globally and restricted to the
intersection of the hyperplanes (6) ). Substituting thesaes

of the As and taking account of the fact that, ¢~ " = r(1 -
%Cm), we get

2

w 2w
F > M? - — .
- " (TI, T5crit n + r)
Then from (5) we obtain
M w?
dM(M —1) d,( 2wn —
Z w y ( wn T'(Scrit)

x,yeC
which gives the resulta

The proof of the theorem is completed as follows. 1Sgt
be a sphere of radius around zero. Clearly,

C[[Sw| =D I(C
meﬁ
where A, (n, d, w) is the maximum size of a distandecode
in S,,. With the previous lemma, this gives the resut.

—x)NSy| < ¢""Ay(n,d, w),

Using (3), the asymptotic version of the BE bound is

I{q,r(fscrit(1 -V 1- 5/5crit))-

R<1-—

IIl. THE ORDEREDHAMMING SCHEME

An association scheme that describes the combinatorics of
the NRT space was constructed in [10]. Define ranlass
“kernel scheme’X(Q"!,D = (Dy,Dy,...,D,)) with the
relations

D; = {(z1,x3) € Q"' x Q"1

th&@he next theorem uses the notion of Delsarte extension of
association schemes [6, p.17]. (We refer to [6], [3] for gahe
combinatorial background.)
Theorem 3.1: [10] The spaceX = Q™" together with the
relations

dr(wl,.’llg):i} (OSZS’I’)

R.={(x,y) e X xX:x~y} (e€A,,)

forms a formally self-dual association scheﬁe called ther-
Hamming scheme. In can be constructed ag-dold Delsarte
extension offC.

This |mpI|es in particular that the first and second eigemesl

of H coincide. In this section we establish properties of the
eigenvalues for later use in bounding the size of codes and
OOAs. We remark that the valences of the scheme are equal
to its multiplicities, and both are given by, e € A, ;.



In the conventional case of = 1, eigenvalues of the (v) For anye, f € A, ,
Hamming scheme are given by the Krawtchouk polynomials
, Ky(e Z pf oKn(e) (13)

s =00 () (070 @ néans

=0 where the linearization coeff|C|en;$g Hze Q" :z~y
~g Y;x ~p, y}| are the intersection numbers of the
scheme. In particulap” > 0.
(vi) (Three-term relation) Let K, be a column vector of the
polynomialsK ; ordered lexicographically with respect to all
f that satisfy| f| = . The three-term relation is obtained by
expanding the producP(e)Ky(e) in the basis{ K}, where
P(e) is a first-degree polynomial. By orthogonality, the only
nonzero terms in this expansion will be polynomials of degre
(o) = D vle)d(e)w(e) (9) ~+Lrr—1[8 p.75].
- We establish an explicit form of the three-term relation for
P(e) = beritrn — |e|’. We have

which form a family of polynomials of one discrete variablé® *
orthogonal on{0, 1,...,n} with weighta(i) = (7)27¢, i.e.,
the binomial probability distribution. Here we are intetaids
in their multivariable generalization.

Let V =V, ,, be the space of real polynomialsofiiscrete
variablesz = (z1,z2,...2,) defined onA,, ,. Let us define
a bilinear form acting on the spadé by

wherew(e) = ¢~ ""v.. By Delsarte, the eigenvalues ot are
orthogonal, namelyP,, Py) = ., ve. Let P(e)Ky(e) = arKuti(e) + buKnle) + cuu-1(e)  (14)

pi=gd " g—1)i=1 v ope =g wherea,,, by, ¢, are matrices of ordef" ") x (*tITr1),
1 T b - AR | b - .

The numberg;,i =0, ..., r define a multinomial probability matrices have the following form:
distribution on the set of partitions according to anlfsh] = Li(fi + 1)

it b= (fro fit Lo ]
—n'H€'7 I (fl f+ f)

cxlf h] = Li(n — ki + )¢ H(q — 1)
andPr(e) = w(e). With this, we recognize the eigenvaluBs

ifh=(fr, ., fi—1,..,fr)

as a particular case of multivariable Krawtchouk polyndmia Lifiqd" (g - 2) ifh=f
[16] which form an orthogonal basis of the spabe = Li(fe + )¢ (g —1)
Ly(A,,) of real polynomials ofr discrete variables. For a if h=(f1,.., fe+1,....fi—1,...,f),
partition f € A, denote by belf,h] = . 1<k<i
Li(fi+1)¢" (g —1)
Kyp(z) = Kj, g (21, 2r) ifh=(f1,....fu—1,....fi+1,..., f)
the Krawtchouk polynomial that corresponds to it. ket | f| 1<k<i
be the degree oi;. wherel, — ¢ "'=1
Properties of the polynomials ;. The next properties fol- a"(¢=1)
low from the general theory of [6]. Along with the polynomialgs. below we use their normal-

() K.(z) is a polynomial in the variables, ...,z, of 12&d versionis, = K./ /v.. The polynomial K. € Ay}
degreer = |e|. There are("“ 1) different polynom|als of form an orthonormal basis df’. The matricess, b, c in the

the same degree, each corresponding to a partition of orthonormal basis will be denoted by, B, C' respectively.

(ii) (Orthogonality) Let V. C V be the set of polynomials of total degreex.
Let E, be the orthogonal projection from on V,,. Define
(Ky, Kg) =vsbpg, Kyl = /v5 (10)  the operator
In particular, letF; = (077110714, = 1,...,r be a S, V. = V.
partition with one part. We have ¢ — E,.(Pe)y).
IKp|* = (Kp,,Kr) =n(qg—1)¢""" i=1,....,r. (11) Its matrix in the orthonormal basis has the form
(iii) (Linear polynomials) Fori=1,...,r, By A 0 ... 0
- _ Ci, By A ... 0
KFi (.T) = q17 (q—l)(n—xr—- : '_xr—i+2)_qzxr—i+l- (12) g,{ — 0 CQ BQ R 0
This can be computed by Gram-Schmidt starting with : : e
Ky, ..o =1 and using (11). 0O 0 ... C. Bg
(iv) . T
veKp(e) = viKo(f) (e, f € Any). where theB;s are symmetric and’; = A, _;,i = 1,... k.

On account of property (v) and the fact thdt(e) =
In particular, K ;(0) = vy. >, LiKF,(e), the matrix elements d8,. are nonnegative.

wheret = 1,0, —1 respectively. The nonzero elements of these



The matrix ofS,; in the basis{ K.} has the property wheree; > 0 are some constants indexed by the partitions of
weightx (their values will be chosen later). The matrixBGf

vnSklfh] = vsSulh, /T (f.h € Anr). (5) i the orthonormal basis equals
vii) (Explicit expression ~ ~
(vii) (Exp pression) TH:SH_{O 0]
» r 0 F
Ky(x) = ¢V kg (s, i) (16)

where E = diag(ey, | f| = ) is a matrix of order("}"}").

Let m be such thafl,, + mI > 0. By Perron-Frobenius, the
spectral radiup(7,,+mI) is well-defined and is an eigenvalue
of (algebraic and geometric) multiplicity one @f, + mli.
Moreover, again using Perron-Frobenius,

i=1
where kg, is a univariate Krawtchouk polynomial (8),; =
S ot a =3y fi,and £,z € A, .. This form of the
polynomial K(z) was obtained in [5] (various other forms
were found in [10], [7]).

(viii) (Christoffel-Darboux). Let L C A,, ,, and define p(Sk—1+mI) < p(T,, + mI) < p(S, +mI).
Ur(a,e) 2> v Kp(a)Ks(e) (a,e€ A,,). Then
f; ! Aut < B, < A (22)
The action ofP(e) on Uy, is described as follows: wheret,, = p(T,). Let G > 0 be the eigenfunction of.
with eigenvalud,;. Let us write out the produd®(e)G in the
(P(e) — P(a))UL(a,e) orthonormal basis:
= Z vr! Z Sklf, h](Kn(e)Ky(a) — Kn(a)Ks(e)), P(e)G = GS, + G A Ky
feL h€Ayn r\L ~ ~
A particular case of the above is obtained when= {f : = 0eG+ f.fz| erGs Kyt Gudelpr.

|f| < x}. The kernelU,, denoted in this case bY,., equals . o
U, :Zﬁ_oﬁis(e)T}Ks(Q)a and we obtain where G, is a projection of the vectolG on the space

_ _ Vi:\Vi—1. This implies the equality
(P(e) = P(a))Ux(a,e) = Qf(e)Ks(a) = Kf(e)Qy(a) >
fle_ e e o Zirmn GrlerKs + Q)
_ a7 B P(e) — b6 ’
where Qr(€) = 3 p.jn—ps1 Kn(e)Aclf, h]. This relation is \ynerey,(c) is defined after (17). Now tak&(e) = (P(e) —
called the Christoffel-Darboux formula. 0,.)G?(e). Let us verify (18). Since multiplication by a func-
IV. ANLP BOUND ON CODES ANDOOAS tion is a self-adjoint operator, we obtain
The next result is a particular case of Delsarte’s bound (ség = (F, Z Gi(esKf +Qy), G Z Giep > 0.
also [9]). |fl=r |fl=r

Theorem 4.1: Let F(z) = Fo + 3 ., FeKe(z) be @ By (13) F. > 0 for e # 0. The assumption of the theorem
polynomial that satisfies together with (22) implies thaF (e) < 0 for |e|’ > d. Hence

Fy>0, Fo20 (e#0): F(e)<0 (lef =d). (18) P (S Crlern) +Qs(0)

Then any(n, M, d) code satisfies M <

Fo (P(0) —6x) Zm:n G?fff
< .
M < F(0)/Fy | N (29) Z ajKj 0) + Q;(0))2 B 42“‘.‘:’{ Qr(0) /o7 (23)
Any OOA of strengtht = d — 1 and sizeM’ satisfies - = (P(0) — A\y)ey = P(0) — A\,
M' > q"" Fy/F(0). (20)  where in the third step we used the Cauchy-Schwarz inegualit
We use this result to prove the next and in the last step computed the minimumegn Next,
Theorem 4.2: Let C  H be an(n, M,d) code and let\,,
denote the maximum eigenvalue §f. Then > Qi0)ur= > Vur > Alf hlvon.
4rden(n = r)(g" = )" o i e
M < pEE—— <I€> (21) Leth = (fi.....fi+1,...., f;) for somei,1 <i <r. Then
using (1) we find
wherex is any degree such thd(e) < A\,_; for all shapes 1
e with |e| > d. Aulf, ko = (1—m)(n—n)ﬁ,
Proof : Consider the operatdf,, that equalsS, onV,_; and q
acts on a functionp € V,\V,._; by Thus we have

To(p) = Sep— Y erosKy, > Qr0)yor= ) Z (n—# ( 7 11+1)”f

F:lfl=x |fl=r |fl=r =1



— (= K)rbeie 3 v = (n— K)rde <Z> (" — 1)~

|f1=r
Substitution of this into (23) concludes the proaf.

where

2
r— 2

)7q—1 q—2
q

q q

v(x (¢g—Dz(1 —x).

The asymptotic rate of any family of OOAs of relative stréngt

Remark: The proof uses a “spectral method” first employegl satisfiesR > 1 — ®

in [2] for the Grassmannian space and later used in [4] to
prove classical asymptotic bounds of coding theory. The gis
of the method can be explained as follows. The polynomial r
F(e) is sought in the formF(e) = u(e)G?(e) whereu(e) is
a linear function that assures théte) < 0 in (18) andG(e)
is a function that maximizes the Fourier transfofmgo0). It
turns out that a good choice f@r is a delta-function at (or
near)d. An approximation of the delta-function is given by
the (Dirichlet) kernelU,, which is its projection onV,,. We
therefore seek to modify the operattt so thatU,, becomes
its eigenfunction with eigenvalu@,, express the bound of
Theorem 4.1 as a function &, and optimize ons within
the limits (18). The reader is advised to consult the unateri
case [4] for which these ideas become more apparent.
Next we estimate the spectral radius 8f using some
combinatorics of partitions and prove the following asyatiat
result.
Theorem 4.3: Let R;p(d) be the function defined by

R(7) = L(hg(r) + 7log,((¢" —1)/(q — 1))),
5(7) = bert — L max { S L (2\/(1 (g = Drigi—1
+a - 2)mg N @ = 1) + 22 ST V) |

where the maximum is taken ovér; > 0; Zé:lTi =7} M
Then the asymptotic rate of any code family of relativep)
distance) satisfiesR < Ry p(d) and the rate of any family of
OOAs of relative strength satisfieskR > 1 — Ry, p(0).

4.3

0<7<1,

(3]

V. AN IMPROVED BOUND FORr = 2 4

In this section we prove a bound for codes (g, n,2) 5]

which improves upon the general result of the previoussecti [g)
The improvement is due to the fact that in the case 2

[7]

it is possible to work with the polynomial&s(e) in their
explicit form, and base the bound on the behavior of their

zeros instead of the spectral radius of the opergtoNamely, [g]
let f = (f1, f2),e = (e1,e2). From (16) we have ]
Ky¢(e) = qf2kf2 (n — ez, e1)k, (n— f2,e2).
We use the polynomiaF(a,e) = (P(e) — P(a))U2(a,e) 1O
with a specially designed sét in Theorem 4.1. The analysis
relies on the ideas of [1], leading to [11]

Theorem 5.1: The asymptotic rate of any family of codes{lzl
of relative distance satisfiesR < ®(¢), where
[13]

o(6)

)

1 T1

where the minimum is taken over al|, » that satisfy
0<n<(¢—-1)/¢*, 0<m<(¢—-1)/q
Y(12) + (2 = y(12))(1 — 72)y(11) <26

min 1/2{72 + hy(r1) + (1 — 71)hg(

T1,7T2

(14]
[15]

[16]

(6.

1
Thm 4.3

- Plotkin

[eY]

0.2¢

0.1

Fig. 1. Bounds for = 2,q =2

The bound of Theorem 5.1 is inferior to the result of Theorem

for larged. For r > 2 Theorem 4.3 gives the best result

for ¢ in this region.
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