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Abstract—The use of multiple frequency shift keying modula-
tion with permutation codes addresses the problem of permanent
narrowband noise disturbance in a power line communications
system. In this paper, we extend this coded modulation scheme
based on permutation codes to general codes and introduce an
additional new parameter that helps to more precisely capture a
code’s performance against permanent narrowband noise. As a
result, we define a new class of codes, namely, equitable symbol
weight codes, which are optimal with respect to this measure. In
addition, we demonstrate via simulations that equitable symbol
weight codes achieve lower symbol error rates than other codes
of the same length and distance over the same alphabet.

I. INTRODUCTION

Power line communications (PLC) is a technology that
enables the transmission of data over high voltage electric
power lines. Started in the 1950’s in the form of ripple control
for load and tariff management in power distribution, this low
bandwidth one-way communication system has evolved to a
two-way communication system in the 1980’s. With the emer-
gence of the Internet in the 1990’s, research into broadband
PLC gathered pace as a promising technology for Internet
access and local area networking, since the electrical grid
infrastructure provides “last mile” connectivity to premises and
capillarity within premises. Recently, there has been a renewed
interest in high-speed narrowband PLC due to applications in
sustainable energy strategies, specifically in smart grids (see
[1]–[4]).

However, power lines present a difficult communications
environment and overcoming permanent narrowband distur-
bance has remained a challenging problem [5]–[7]. Vinck [5]
addressed this problem by showing that multiple frequency
shift keying (MFSK) modulation, in conjunction with the use
of a permutation code having minimum (Hamming) distance
d, is able to correct up to d−1 errors due to narrowband noise.
Since then, more general codes such as constant-composition
codes, frequency permutation arrays, and injection codes (see
[8]–[23]) have been considered as possible replacements for
permutation codes in PLC. Versfeld et al. [24], [25] later
introduced the notion of ‘same-symbol weight’ (henceforth,
termed as symbol weight) of a code as a measure of the capa-
bility of a code in dealing with narrowband noise. They also
showed empirically that low symbol weight cosets of Reed-
Solomon codes outperform normal Reed-Solomon codes in
the presence of narrowband noise and additive white Gaussian
noise. Infinite families of optimal codes with minimum symbol
weight were constructed by Chee et al. [26] recently.

Unfortunately, symbol weight alone is not sufficient to
capture the performance of a code in dealing with permanent
narrowband noise. The purpose of this paper is to extend
the analysis of Vinck’s coded modulation scheme based on
permutation codes (see [5], [27, Subsection 5.2.4]) to gen-
eral codes. In the process, we introduce an additional new
parameter that more precisely captures a code’s performance
against permanent narrowband noise. This parameter is related
to symbol equity, the uniformity of frequencies of symbols in
each codeword. Codes designed taking into account this new
parameter are shown to perform better than general ones.

II. PRELIMINARIES

For a positive integer n, the set {1, 2, . . . , n} is denoted by
[n]. For X a finite set and k an integer, 0 ≤ k ≤ |X|, the set
of all k-subsets of X is denoted

(
X
k

)
.

Let Σ be a set of q symbols. A q-ary code C of length n over
the alphabet Σ is a subset of Σn. Elements of C are called
codewords. The size of C is the number of codewords in C.
For i ∈ [n], the ith coordinate of a codeword u is denoted by
ui, so that u = (u1, u2, . . . , un).

The composition of u ∈ Σn is a vector (wσ(u))σ∈Σ, where
wσ(u) is the number of times the symbol σ appears among
the coordinates of u, that is,

wσ(u) = |{i ∈ [n] : ui = σ}|.

The symbol weight of u is

swt(u) = max
σ∈Σ

wσ(u).

A code has bounded symbol weight r if all its codewords
have symbol weight at most r. A code C has constant symbol
weight r if all its codewords have symbol weight exactly r.
Note that for any u ∈ Σn, we have swt(u) ≥ dn/qe. A code
has minimum symbol weight if it has constant symbol weight
dn/qe.

An element u ∈ Σn is said to have equitable symbol weight
if wσ(u) ∈ {bn/qc, dn/qe} for all σ ∈ Σ. If all the codewords
of C have equitable symbol weight, then the code C is called
an equitable symbol weight code. Note that every equitable
symbol weight code is also a minimum symbol weight code.
The following lemma shows that for any u ∈ Σn having
equitable symbol weight, the number of symbols occurring
with frequency dn/qe in u is uniquely determined. Hence,
the frequencies of symbols in an equitable symbol weight
codeword are as uniformly distributed as possible.
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Lemma 2.1: Let u ∈ Σn, r = dn/qe, and t = qr − n. If u
has equitable symbol weight, then there are (q − t) symbols
each appearing exactly r times and the remaining t symbols
each appearing exactly r − 1 times in u, that is,

|{σ ∈ Σ : wσ(u) = r}| = q − t,
|{σ ∈ Σ : wσ(u) = r − 1}| = t.

Proof: Let x = |{σ ∈ Σ : wσ(u) = r}| and y = |{σ ∈
Σ : wσ(u) = r − 1}|. Then the following equations hold:

x+ y = q,

rx+ (r − 1)y = n.

Solving this set of equations gives the lemma.

Consider the usual (Hamming) distance defined on code-
words and codes. A q-ary code of length n and distance d is
called an (n, d)q-code, while a q-ary code of length n having
bounded symbol weight r and distance d is called an (n, d, r)q-
symbol weight code, and a q-ary equitable symbol weight code
of length n and distance d is called an (n, d)q-equitable symbol
weight code.

III. CORRECTING NOISE WITH MFSK MODULATION

In coded modulation for power line communications [5], a
q-ary code of length n is used, whose symbols are modulated
using q-ary MFSK. The receiver demodulates the received
signal using an envelope detector to obtain an output, which
is then decoded by a decoder.

Four detector/decoder combinations are possible: classical,
modified classical, hard-decision threshold, and soft-decision
threshold (see [27] for details). A soft-decision threshold
detector/decoder requires exact channel state knowledge and is
therefore not useful if we do not have channel state knowledge.
Henceforth, we only consider the hard-decision threshold
detector/decoder here, since it contains more information about
the received signal compared to the classical and modified
classical ones. We note that in the case of the hard-decision
threshold detector/decoder, the decoder used is a minimum
distance decoder.

Let C be an (n, d)q-code over alphabet Σ, and let u =
(u1, . . . , un) be a codeword transmitted over the PLC channel.
The received signal (which may contain errors caused by
noise) is demodulated to give an output v = (v1, v2, . . . , vn) ∈(
2Σ
)n

, where 2Σ denotes the collection of all subsets of Σ.
Note that each vi is a subset of Σ. The errors that arise from
the different types of noises in the channel (see [27, pp. 222–
223]) have the following effects on the output of the detector.

1) Let 1 ≤ e ≤ q. If e narrowband noise errors occur, then
there is a set of e symbols contained in every vi, that is,
| ∩ni=1 vi| ≥ e.

2) Let 1 ≤ e ≤ q. If e signal fading errors occur, then
there are e symbols, none of which appears in any vi,
that is, (∪ni=1vi) ∩ Γ = ∅ for some Γ ∈

(
Σ
e

)
.

3) Let 1 ≤ e ≤ n. If e impulse noise errors occur, then
there is a set Π ∈

(
[n]
e

)
of e positions such that vi = Σ

for all i ∈ Π.

4) Let 1 ≤ e ≤ n(q − 1). If e insertion errors occur, then
there is a set Ω ∈

(
[n]×Σ
e

)
such that for each (i, σ) ∈ Ω,

vi contains σ and σ 6= ui.
5) Let 1 ≤ e ≤ n. If e deletion errors occur, then there is a

set Π ∈
(

[n]
e

)
of e positions that that vi does not contain

ui for all i ∈ Π.
Both insertion and deletion errors are due to background noise.

Example 3.1: The same detector output can arise from
different combinations of error types. Suppose u = (1, 2, 3, 4).
A signal fading error of symbol 1 and a deletion error at
position 1 would each result in the same detector output of
v = (∅, {2}, {3}, {4}).

For u ∈ Σn and v ∈
(
2Σ
)n

, define1

d(u, v) = |{i : ui /∈ vi}|.

We also extend the definition of distance so that for C ⊆
Σn, we have d(C, v) = minu∈C d(u, v). Given v ∈ (2Σ)n, a
minimum distance decoder (for a code C) outputs a codeword
u ∈ C which has the smallest distance to v, that is, a minimum
distance decoder returns an element of

arg min
u∈C

d(u, v) := {u ∈ C : d(u, v) ≤ d(u′, v) ∀u′ ∈ C}.

Below, we study the conditions under which a minimum
distance decoder outputs the correct codeword, that is, when
arg min

u∈C
d(u, v) = {u}. This is equivalent to saying that the de-

coder correctly outputs u if and only if d(C\{u}, v) > d(u, v).
Let d′ = d(C \ {u}, u). Since C has distance d, we have

d′ ≥ d. Observe the following:
• Let 1 ≤ e ≤ n. If e impulse noise errors occur, then

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n(q − 1). If e insertion errors occur, then

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n. If e deletion errors occur, then

d(u, v) = e and d(C \ {u}, v) = d′.

For errors due to narrowband noise and signal fading, we
define the function EC : [q]→ [n] by

EC(e) = max
Γ∈(Σ

e)
max
c∈C

{∑
σ∈Γ

wσ(c)

}
.

The quantity EC(e) measures the maximum number of coordi-
nates over all codewords that can be affected by e narrowband
noise and/or fading errors. The following is now immediate:
• Let 1 ≤ e ≤ q. If e narrowband noise errors occur, then

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − EC(e).

• Let 1 ≤ e ≤ q. If e signal fading errors occur, then

d(u, v) ≤ EC(e) and d(C \ {u}, v) = d′.

1Identify c ∈ Σn with ({c1}, {c2}, . . . , {cn}) ∈
(
2Σ

)n, so that d(u, c)
gives the Hamming distance of u and c.
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Hence, if we denote by eNBD, eSFD, eIMP, eINS, and eDEL

the number of errors due to narrowband noise, signal fading,
impulse noise, insertion, and deletion, respectively, we have

d(u, v) ≤ eDEL + EC(eSFD),

d(C \ {u}, v) ≥ d′ − eIMP − eINS − EC(eNBD).

Now,

d(u, v)− d(C \ {u}, v)

≤ (eDEL + EC(eSFD))− (d′ − eIMP − eINS − EC(eNBD))

≤ eDEL + eIMP + eINS + EC(eSFD) + EC(eNBD)− d′. (1)

Under the condition

eDEL + eIMP + eINS + EC(eSFD) + EC(eNBD) < d,

the inequality (1) reduces to d(u, v) < d(C \ {u}, v), which
implies correct decoding.

On the other hand, if

eDEL + eIMP + eINS + EC(eSFD) + EC(eNBD) ≥ d,

say eIMP = d, and u,w ∈ C is such that d(u,w) = d (since C
has distance d, u,w must exist), then d′ = d(C \ {u}, u) = d,
and we have d(u, v)−d(C \{u}, v) ≤ d−d′ = 0. In this case,
the correctness of the decoder output cannot be guaranteed.
We therefore have the following theorem.

Theorem 3.1: Let C be an (n, d)q-code over alphabet Σ. Let
eDEL, eIMP, eINS ∈ [n] and eNBD, eSFD ∈ [q]. Then C is able
to correct eNBD narrowband noise errors, eSFD signal fading
errors, eIMP impulse noise errors, eINS insertion errors, and
eDEL deletion errors if and only if

eDEL + eIMP + eINS + EC(eSFD) + EC(eNBD) < d.

Therefore, the parameters n, q, d, and r (symbol weight) of
a code are insufficient to characterize the total error-correcting
capability of a code in a PLC system, since EC cannot be
specified by n, q, d, and r alone. We now introduce an
additional new parameter that together with n, q, and d, more
precisely captures the error-correcting capability of a code for
PLC.

Definition 3.1: Let C be a code of distance d. The narrow-
band noise and signal fading error-correcting capability of C
is

c(C) = min{e : EC(e) ≥ d}.

From Theorem 3.1 we infer that a code C can correct up to
c(C)−1 narrowband noise and signal fading errors. In general,
for codes C with bounded symbol weight r, we have dd/re ≤
c(C) ≤ min{d, q}. However, the gap between the upper and
lower bounds can be large. Furthermore, the lower bound can
be attained, giving codes of low resilience against narrowband
noise, as is shown in the following example.

Example 3.2: The code

C = {(1, . . . , 1︸ ︷︷ ︸
r times

, 2, 3, 4 . . . q), (2, . . . , 2︸ ︷︷ ︸
r times

, 1, 3, 4 . . . q)}

is a (q + r − 1, r + 1, r)q-symbol weight code with nar-
rowband noise and signal fading error-correcting capability
c(C) = dd/re = 2.

In the next section, we provide a tight upper bound for c(C)
and demonstrate that equitable symbol weight codes attain this
upper bound.

IV. EC AND EQUITABLE SYMBOL WEIGHT CODES

If C is a code of length n with bounded symbol weight r,
then EC(1) = r, and EC(e) ≥ min{n, r + e − 1} for e > 1.
If C is restricted to more specific classes of codes, EC can be
determined precisely. In the following, C is a q-ary code of
length n over Σ = [q].

1) When q|n, we have EC(e) = ne/q for all e ∈ [q] if and
only if C is a frequency permutation array.

2) When n ≤ q,

EC(e) =

{
e, for all e ∈ [n]

n, otherwise

if and only if C is an injection code. In particular, when
q = n, this gives EC(e) = e for all e ∈ [q] if and only
if C is a permutation code.

3) Let (c1, c2, . . . , cq) ∈ [n]q with c1 ≥ c2 ≥ · · · ≥ cq . If
for each u ∈ C, we have wj(u) = cj for all j ∈ [q],
then EC(e) =

∑e
i=1 ci for all e ∈ [q]. Such a code is a

constant-composition code.
4) If C is an equitable symbol weight code, then from

Lemma 2.1,

EC(e) =

{
re, if e ≤ q − t
r(q − t) + (e− q + t)(r − 1), otherwise,

where r = dn/qe and t = qr − n.
For c(C) to be large, EC must be slow growing. We seek

codes C for which EC is as slow growing as possible. Fix n, q,
and let Fn,q be the (finite) family of functions

Fn,q = {EC : C is a q-ary code of length n}.

If f ∈ Fn,q , then f is a monotone increasing function with
f(q) = n. Define the order � on Fn,q so that f � g if either
f(e) = g(e) for all e ∈ [q], or there exists2 e′ ∈ [q] such that
f(e) = g(e) for all e ≤ e′ − 1 and f(e′) < g(e′).

Proposition 4.1: Let f∗n,q : [q]→ [n] be defined by

f∗n,q(e) =

{
re, if 1 ≤ e ≤ q − t
r(q − t) + (e− q + t)(r − 1), otherwise,

where r = dn/qe and t = qr − n. Then f∗n,q is the unique
least element in Fn,q with respect to the total order �.

Proof: Since � is total, it suffices to establish that f∗n,q �
f for all f ∈ Fn,q , and that f∗n,q ∈ Fn,q .

Let f = EC ∈ Fn,q , where C is a q-ary code of length
n over the alphabet [q]. Let u ∈ C. By permuting symbols

2Note that when e′ = 1, the statement is vacuously true.
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if necessary, we may assume that w1(u) ≥ w2(u) ≥ · · · ≥
wq(u). We show that for all e ∈ [q],

e∑
i=1

wi(u) ≥ f∗n,q(e). (2)

This would then imply EC(e) ≥ f∗n,q(e) for all e ∈ [q], and
consequently f � f∗n,q .

Suppose on the contrary that
∑e
i=1 wi(u) < f∗n,q(e) for

some e ∈ [q]. If e ≤ q − t, then we have
∑e
i=1 wi(u) < re

and r − 1 ≥ we(u) ≥ wj(u) for j ≥ e+ 1. Hence,

n =

q∑
i=1

wi(u) < re+(q−e)(r−1) = qr−q+e ≤ qr−t = n,

a contradiction.
Similarly, when e > q − t, we have

∑e
i=1 wi(u) < r(q −

t)+(e−q+t)(r−1) and r−1 ≥ we(u) ≥ wj(u) for j ≥ e+1.
Hence,

n =

q∑
i=1

wi(u)

< r(q − t) + (e− q + t)(r − 1) + (q − e)(r − 1)

= qr − t = n,

also a contradiction.
The proposition then follows by noting that f∗n,q ∈ Fn,q ,

since EC = f∗n,q when C is a q-ary equitable symbol weight
code of length n.

Corollary 4.1: C is a q-ary equitable symbol weight code
of length n if and only if EC = f∗n,q .

Proof: If C is a q-ary equitable symbol weight code of
length n, we have already determined that EC = f∗n,q . Hence,
it only remains to show that EC = f∗n,q implies C is a q-ary
equitable symbol weight code of length n. Let u ∈ C and we
follow the notations in the proof of Proposition 4.1. Equality
holds in (2) if and only if wi(u) = r for 1 ≤ i ≤ q − t and
wi(u) = r − 1, otherwise. That is, u has equitable symbol
weight. Hence, C is an equitable symbol weight code.

It follows that an equitable symbol weight code C gives EC
of the slowest growth rate. This is the desired condition for
correcting as many narrowband noise and signal fading errors
as possible.

We end this section with a tight upper bound on c(C).

Corollary 4.2: Let C be an (n, d)q-code. Then

c(C) ≤ min {e : f∗n,q(e) ≥ d},

and equality is achieved when C has equitable symbol weight.
Proof: Let c′ = min{e : f∗n,q(e) ≥ d}. Observe that

EC(c
′) ≥ f∗n,q(c′) ≥ d.

Hence, by minimality of c(C), we have c(C) ≤ c′. The second
part of the statement follows from Corollary 4.1.

The results in this section establish that an equitable symbol
weight code has the best narrowband noise and signal fading
error-correcting capability, among codes of the same distance
and symbol weight.

V. SIMULATION RESULTS

In this section, we show via simulations the difference
in performance between equitable symbol weight codes and
(non-equitable) minimum symbol weight codes in the presence
of narrowband noise and signal fading. More specifically, we
consider the following codes3.
CSW : (25, 24, 2)17-symbol weight code of size 51,
CESW : (25, 24)17-equitable symbol weight code of size 51,
DSW : (17, 17, 2)16-symbol weight code of size 16, and
DESW : (17, 17)16-equitable symbol weight code of size 16.

We show that CESW and DESW achieve lower symbol error rates
as compared to CSW and DSW, respectively, in a PLC channel
with varying degrees of narrowband noise and signal fading
levels.
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Fig. 1. Comparison of various optimal codes in a simulated PLC channel.

The setup is as follows. Let p be a real number between
0 and 1. We simulate a PLC channel with the following
characteristics:

1) for each σ ∈ Σ, a narrowband noise or signal fading
error occurs at symbol σ with probability p,

3Due to space constraints, we only made comparisons between codes of
different lengths. More simulation results are given in the full paper.

669



2) for each i ∈ [n], an impulse noise error occurs at
coordinate i with probability 0.1, and

3) for each (σ, i) ∈ Σ × [n], an insertion/deletion error
occurs at symbol σ, coordinate i with probability 0.1.

These errors occur independently.
We choose 105 random codewords (with repetition) from

each code to transmit through the simulated PLC channel.
At the receiver, we decode detector output v to codeword
u′. The number of symbols in error is then d(u′, u) and the
symbol error rate is the ratio of the total number of symbols in
error to the total number of symbols transmitted. For uncoded
communication, 105 random codewords were chosen from Σn

and errors introduced. Here, no decoding is performed and the
number of symbols in error is given by |{i : vi 6= {ui}|.

The results of the simulation are displayed in Fig. 1.
Equitable symbol weight codes CESW and DESW achieve lower
symbol error rates compared to the minimum symbol weight
codes CSW and DSW, respectively.

VI. CONCLUSION

We have introduced a new code parameter that captures
the error-correcting capability of a code with respect to nar-
rowband noise and signal fading. Equitable symbol weight
codes are shown to be optimal with respect to this parameter
when code length, alphabet size and distance are fixed. We
also provide simulations that show equitable symbol weight
codes to achieve lower symbol error rates as compared to their
non-equitable counterparts. These results motivate the study
of equitable symbol weight codes as a viable option to handle
narrowband noise and signal fading in a PLC channel.

We have also constructed infinite classes of optimal equi-
table symbol weight codes. This will appear in the full paper.
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