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Abstract—Flash memory is a nonvolatile memory technology
that suffers from errors due to charge leakage, can tolerate limited
erasures, and where erasures have to be performed in large blocks.
We show that using cosets of a linear code can provide correction
against uniform charge leakage, and can enhance the rewritability
of flash memory which leads to fewer erasures. We introduce two
coset coding schemes that are generalizations of the scheme in
Jacobvitz et al. (2013). For the same worst case rewrite cost, we
show that coset codes can encode more information than rank
modulation codes. The average case performance of coset codes is
demonstrated via numerical simulations.

1. INTRODUCTION

Flash memory is a nonvolatile memory technology that has

become a dominant medium of storage over the past decade

in both consumer and enterprise applications. In this memory

technology charge is injected iteratively into a cell to bring the

charge to a desired level, and the level of the charge encodes the

bits that are to be recorded. Multilevel flash memory is used to

increase the density of information stored, and also to improve

the speed of reading and writing data to the memory. Despite

being a fast medium, multilevel flash memory technology

suffers from a couple of deficiencies that we describe below

briefly (see [1] for details).

(i) Resetting the charge level of a cell to the lowest level

corresponds to an erase operation. This erasure operation

can not be performed on individual cells, and instead

has to be performed on a block of about a million cells.

Therefore, it is a slow operation. Additionally, the number

of erasure operations that can be performed is limited to

about 105 erasures in the lifetime of the device.

(ii) Aging effects in flash memory may result in a uniform

drift of charge levels, which can lead to programming and

read errors because of the shift in threshold levels.

(iii) Random errors can occur during reading or writing be-

cause of the device characteristics.

(iv) Overshooting problem can arise in writing to a multilevel

flash memory, where the final programmed charge level

exceeds the desired charge level, if the process of charge

injection is not carefully controlled.

To overcome these limitations of flash memory, many dif-

ferent encoding techniques have been proposed over the past

several decades. In particular, the problem of erasure is handled

by modeling the flash memory as a write once memory (WOM)

if each cell can represent only a single bit, and a write

asymmetric memory (WAM) if each cell can represent more

than one bit of information. There is long precedent for codes

that have been studied for WOM and WAM type memories,

starting with the work of Rivest and Shamir [2], Cohen et al.

[3], and the more recent works by Jiang et al. [4], Yaakobi et

al. [5], and Jacobvitz et al. [6], [7]. The objective of all these

works is to maximize the number of rewrites that can be made;

or equivalently maximize the amount of information that can be

written if the number of times rewrites that can be performed

is bounded.

The problem of uniform charge leakage due to aging can

be addressed by using error correcting codes. In particular, the

study of rank modulation codes was initiated in Jiang et al.

[8], [9], and error scrubbing codes were studied in Jiang et al.

[10] to address this problem. The problem of large nonuniform

charge leakage was studied in Farnoud et al. [11].

Relatively fewer works are present which study codes that

can correct both random errors and also ensure rewritability. We

note a couple of works in this direction. The work of Cohen et

al. [3] studied binary error correcting codes for WOM, Yaakobi

et al. [5] studied WOM codes and their generalizations to WAM,

Jiang et al. [4] uses nested polar codes, Haymaker [12] uses

geometric constructions for WOM, Kurkoski [13] studies codes

arising from lattice structures, and Jacobvitz et al. [6], [7] uses

binary coset codes for error correction and rewrites. A specific

construction by Jiang et al. [8] also uses rank modulation codes

to address the problem of uniform charge leakage, errors due

to overshooting, and rewritability.

In this work, we use cosets of linear codes for handling

uniform charge leakage, for ensuring rewritability, and for error

correction in flash memory. We do not address the problem of

overshooting in this work. We assume that the process of careful

charge injection can mitigate the overshooting problem. We

assume that the flash memory has discrete charge levels. This is

a reasonable assumption since the charge is injected in discrete

quantities and the detection of different charge levels requires

a minimum separation between consecutive charge levels. Our

initial construction uses cosets formed from the subspace gener-

ated by the all-one vector to capture the phenomenon of uniform

charge leakage due to aging. Further errors due to random

charge leakage, or programming errors in individual cells can

be corrected by the linear code. The second coding scheme

builds up on this construction by dividing the total number of

levels into parts of size q each, and optimizing the charge level

of each cell individually. This scheme can be considered as a

generalization of the method in Jacobvitz et al. [7] to q-ary

codes. As noted in [7], the use of cosets implies that the same

information can be represented by a set of codewords. Hence,



we can optimize over this set of codewords so that the “cost”

of a rewrite is minimized. On the other hand, if we choose the

coset from a linear error-correcting code, the error-correcting

capability of the coset code follows from that of the linear

code. Both these constructions differs from WOM and WAM

codes studied in [4], [5] in that the number of levels is not

restricted to the alphabet size of the code. Since our code is

designed to correct uniform charge leakage, we compare the

average number of rewrites with the average number of rewrites

in rank modulation. It is observed that using coset codes results

in larger number of rewrites on average, as compared to rank

modulation codes.

The rest of the paper is organized as follows. The next section

introduces some basic notations and definitions. Section 3 gives

the two coset coding schemes. Section 4 compares the two

constructions from Section 3. In this section we also compare

the properties of the code with that of a rank modulation code.

To compare the average number of rewrites we simulate the

performance of the rank modulation code and the coset codes.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we let L, n, k and q denote positive

integers. In particular, q is assumed to be a prime or a power

of a prime. The set {1, 2, . . . , n} is denoted by [n] while the

integers modulo q and the finite field of order q are denoted

by Zq and Fq respectively. In this paper, we sometimes map

integers to elements in Fq . When q is prime, taking integers

modulo q clearly suffices. When q is not prime, we can consider

any bijective mapping φ : Zq → Fq and abuse our notation by

writing s mod q to mean φ(s mod q) for all integers s. Extend

this to vectors s ∈ Z
n and we have s mod q , (si mod q)i∈[n]

to belong to F
n
q . We denote the span of vectors v1, . . . , vM by

the notation 〈v1, . . . , vM 〉.
We consider the Write Asymmetric Memory (WAM) model

for storage where we consider that the charge levels can only

increase. The WAM consists of a block of n cells, where

each cell has L discrete levels, viz. states 0, . . . , L − 1. These

levels in a cell may correspond to the charge levels that can

be distinguished. In particular, we assume that two consecutive

charge levels l, l′ in a cell are separated by a safety margin, say

∆ such that if |l − l′| > ∆, then we can distinguish between

the two levels (see [6], [14]). A state vector is an element in

{0, . . . , L−1}n. We define a partial ordering on {0, . . . , L−1}n

via the relation s ≤ s′, for s, s′ ∈ {0, . . . , L − 1}n, if sj ≤ s′j
for all j ∈ [n]. Hence, a transition from s to s′ is valid if and

only if s ≤ s′.

Let C be a finite set of messages and let S ⊆ {0, . . . , L −
1}n be a set of encoded states. The quadruple (C, S, α, β) is

a coding scheme for WAM if for all c′ ∈ C and s ∈ S, the

following hold.

(i) α : S×C → S is an encoding function such that α(s, c′) ≥ s,

(ii) β : S → C is a decoding function, where β(α(s, c′)) = c′.

In other words, given the current state s, the function α encodes

a new codeword c′ to a state s′ such that the transition from s

to s′ is valid. On the hand, the function β decodes a state vector

s′ back to its original codeword c′.

Suppose we transition from state s to state s′. The cost of

rewrite γ(s → s′) is defined as the difference of the maximum

of the two states, i.e.,

γ(s → s′) , max
i∈[n]

s′i −max
j∈[n]

sj .

This notion of the cost is used in [8], [9], [14], and as we discuss

below, it provides an analysis of the work in [6], [7].

3. COSET CODING FOR WAM

In this section we describe our coset coding scheme for

WAM that enables us to provide error correction, rewritability,

and address the problem of uniform charge leakage in flash

memory. To compare our schemes with existing schemes we

briefly discuss the schemes in Jacobvitz et al. [6], [7] and Jiang

et al. [8]. Consider codes of block length n. We formally define

the encoding function, provided the decoding function is β(s)
for s in the set of encoded states S. Assume that the current

state is s and that we want to add a codeword c′. Then the

encoding function α(s, c′) outputs a state s′ with the minimum

possible cost γ(s → s′), and minimum cell changes.

A(s, c′) = argmin
s′∈S

(
max
i∈[n]

s′i

)
s.t. β(s′) = c′, s′ ≥ s,

α(s, c′) ∈ argmin
s′∈A(s,c′)

∑

i∈[n]

s′i − si. (1)

The problems of rewritability and error correction was ad-

dressed in [6], [7] by using binary linear coset codes to represent

the data. We rephrase their construction in our own words.

One possible realization of their scheme, called FlipMin, is by

considering a linear code C ⊂ F
n
2 containing the all-one vector

j, and by defining

β(s) = s mod 2 +D,

α(s, c′) ∈ argmin
s′∈S

|{s′i 6= si : i ∈ [n]}| s.t. β(s′) = c′,

where D is a subspace of C containing j. Larger subspace D
potentially increases the average number of rewrites. Given a

new codeword c′ that is a representative of the coset c′+D, the

encoded word is determined by the following steps. Let c be the

previously written codeword. First, we determine the translate

set T = {c+ y : y ∈ c′+D}. Next, the translate that is used to

add the coset representative c′ into memory is determined by

picking any coset leader (of minimum weight) in the translate

set T . Hence, in this scheme, the set of possible codewords is

given by the set of the coset representatives, or equivalently, the

quotient space C/D.

Jacobvitz et al. showed that this procedure minimizes the

number of bit flips that occur in writing [7]. In the following

example, we illustrate the difference with the minimization

objective defined in (1).

Example 3.1. Let the current state be s = (2, 3, 3, 2) and the

codeword corresponding to it is c = 0110. The cosets

S1 = {0000, 0101, 1010, 1111}, S2 = {0001, 0100, 1011, 1110},

S3 = {0010, 0111, 1000, 1101}, S4 = {0011, 0110, 1001, 1100}.



partition the linear space F
4
2 into four equal parts. In other

words, the sets {S1, S2, S3, S4} form the quotient space F
4
2/S1.

Suppose that the new codeword belongs to S2. Then the

translate set is c + S2 = {0111, 0010, 1101, 1000}. There are

two representatives of minimum weight, namely, 0010, 1000,

both of which minimize the number of flipped bits. However,

as illustrated by Fig. 1, using 0010 increases the maximum

charge level by one to the new state s′ = (2, 3, 4, 2), or to

s′ = (4, 3, 4, 4). On the other hand, using the translate coset

leader 1000 implies that the maximum charge level stays the

same to give the new level s′ = (3, 3, 3, 2).
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Fig. 1. Levels when encoding using (1) in contrast to minimum bit flip

In Scheme A, described below, we generalize the method to

q-ary linear coset codes that are encoded using (1).

Scheme A: Let j be the all-one vector of length n. Consider

a linear code C[n, k + 1, d] of length n, dimension k + 1 and

mimimum distance d in F
n
q , containing the all-one vector j. We

encode vectors from the coset code C = C/〈j〉 of size qk by

using (1). Let smin = mini∈[n] si. Then the decoding function

is given by

β(s) = φ
(
(si − smin)i∈[n]

)
+ 〈j〉.

Many well-known families of linear codes contain j, includ-

ing the primitive narrow-sense Bose-Chaudhuri-Hocquenghem

codes, the extended Golay code, the Reed-Müller codes, and

the Reed-Solomon codes [15]. Uniform charge leakage in flash

memory translates all the elements of the coset by a constant

value and hence the codeword that is encoded is unchanged,

and efficient decoding and error correction is immediate because

of the use of linear codes. The vector space 〈j〉 contains only

q elements and so the complexity of determining the coset

representative grows as Θ(n) for a fixed q. Efficient decoding

and error correction is immediate because of the use of linear

codes. One may also use a larger coset D containing j, at the

cost of increase in encoding complexity.

The rewritability of the scheme can be determined from the

worst-case and average case analysis of the encoding operation.

It can be readily seen that the cost of increase is bounded by

q−1, i.e., γ(s → s′) ≤ q−1. This determines the least number

of times we can rewrite a single cell.

Lemma 3.1. Using Scheme A, the number of rewrites is lower

bounded by
⌊
L−1
q−1

⌋
.

Proof: The number of levels used on first write is q;

subsequent writes use only q − 1 additional levels at the most.

Therefore, the total number of times writes can be performed

is at least
⌊
L−1
q−1

⌋
.

We determine an upper bound to the average cost that can be

numerically computed for small alphabet sizes. To determine

this, we first establish a sequence of lemmas. Define

Φ(c) , {φ−1(ci) : i ∈ [n]}.

Lemma 3.2. Suppose we add a vector c′ that has the smallest

cost out of all the possible vectors c′ + 〈j〉, and the previous

state was s. Let 0n be the all-zero vector. Then,

γ(s → α(s, c′)) ≤ γ(0n → α(0n, c
′)) = max {i : i ∈ Φ(c′)}.

Proof: If s = 0n, then we need at least max Φ(c′)
levels to distinguish between the different alphabets in c′. This

determines the equality. If s 6= 0n, increase all the levels to

max{si : i ∈ [n]} and use max Φ(c′) levels to distinguish

between the alphabets in c′. This establishes the inequality.

Define the average cost as the average over all possible states
s and cosets c′ + 〈j〉. By Lemma 3.2, this is upper bounded by
the average over all possible cosets c′ + 〈j〉, i.e.,

1

Lnqn−1

∑

s,c′

γ(s → α(s, c′)) ≤
1

qn−1

∑

c′∈Fnq /〈j〉

γ(0n → α(0n, c
′)).

The cost γ(0n → α(0n, c
′)) is determined by the alphabets

that occur in c̃′ ∈ c′ +D, as described in the lemma below.

Lemma 3.3. If γ(0n → α(0n, c
′)) = q − 1 − ℓ, then a vector

c̃′ ∈ c′ + 〈j〉 with minimum cost satisfies

Φ(c̃′) = {i0 = 0, i1, i2, . . . , ip, ip+1 = q − 1− ℓ}, (2)

where 0 < ij − ij−1 ≤ ℓ+ 1, ∀j = 1, . . . , p+ 1.

Conversely, if c′ ∈ F
n
q satisfies (2) then the minimum cost is

γ(0n → α(0n, c
′)) = q − 1− ℓ.

Proof: To prove the forward direction, suppose that c̃′ is

the codeword with the minimum cost. First we show that 0 and

q − 1 − ℓ must occur in c̃′. If the cost is q − 1 − ℓ then the

alphabet elements q− ℓ, q− ℓ+1, . . . , q− 1 are not present in

c̃′. The vector c̃′ must contain q− 1− ℓ ; otherwise by Lemma

3.2, the cost is strictly less than q − 1− ℓ. Similarly, if 0 does

not occur in c̃′ then the word c̃′ − j has a cost strictly less than

q − 1− ℓ, which contradicts the fact that c̃′ was the word with

the lowest cost.

To complete the proof of the forward part, we now show that

the difference ij − ij−1 is at most ℓ + 1. Suppose not. Then,

there exists an element i such that i is present in c̃′ and the

elements i+ 1, i+ 2, . . . , i+ ℓ+ 1 are not present in c̃′. Then



the vector c̃′ + (q − i − ℓ − 2)j does not have the elements

q− ℓ− 1, q− ℓ, . . . , q− 1 in it. Therefore, this word has a cost

strictly less than that of c̃′. This is a contradiction.

To prove the converse, suppose c′ satisfies (2). Then the cost

of writing c′ is q − 1 − ℓ. Since the difference ij − ij−1 is at

most ℓ+1, no shift of c′ by a multiple of j will have more than

ℓ elements q − ℓ, . . . , q − 1 absent from the resulting word.

Given ℓ ∈ {0, . . . , q− 1}, we next determine the distribution

of the alphabet elements in any vector c′ which satisfy the above

lemma. The answer stems from the count of vectors which are

run-length limited [16]. Let Nℓ(m) be the set of ℓ-sequences

of length m which do not have more than ℓ zeros between

two consecutive ones, and let Nℓ(m) = |Nℓ(m)| Then, Nℓ(m)
satisfies a generalized Fibonacci sequence,

Nℓ(m) =

{
2m, for 0 < m ≤ ℓ,∑ℓ+1

i=1 Nℓ(m− i), for ℓ < m,
(3)

and an explicit construction can also be determined from a

recursive construction of the so-called cross-bifix-free codes

(see [16], [17]). Consider indicator vectors v = (v0, . . . , vq−1)
of length q where v0 = 1 = vq−1−ℓ, and vi = 0, i =
q − ℓ, . . . , q − 1, and (v1, . . . , vq−2−ℓ) is an ℓ-sequence. Then,

Nℓ(q−2−ℓ) is the set of such ℓ-sequences, with the cardinality

given by (3). We first illustrate the lemmas by an example.

Example 3.2. Consider the vector u = 1147 ∈ Z
4
8. We get

Φ(u) = {1, 4, 7}, and so it requires maxΦ(u) = 7 levels

when writing. The coset u + 〈j〉 contains u′ = 2250 and

u′′ = 5503. The vectors u′ and u′′ require only five levels

since maxΦ(u′) = 5 = maxΦ(u′′). It can be verified that

this is the minimum possible cost of rewrite. The indicator

vectors of the alphabets that occur in u, u′, u′′ are respectively,

01001001, 10100100, 10010100. Here, ℓ = 2.

Using the count of the number of vectors whose alphabet

elements satisfy that their indicator vectors are ℓ-sequences in

the first q−1−ℓ coordinates (with the first and last coordinates

fixed to 1), we can derive an upper bound on the average cost.

This is shown by the next Proposition. For a fixed vector, let

nj denote the number of times the alphabet element j occurs

in the vector.

Proposition 3.1. Let nℓ = (n1, . . . , nq−2−ℓ), 1(x) be an

indicator function, and 1(nℓ) = (1(ni > 0))i=1,...,q−2−ℓ. Let

B(ℓ) ,
∑

(n0,nℓ,nq−1−ℓ)
n0,nq−1−ℓ>0, 1(nℓ)∈Nℓ(q−2−ℓ)

(
n

n0,nℓ, nq−1−ℓ

)
.

Then, for ℓ ≥
⌊
q
2

⌋
, B(ℓ) = (q− ℓ)n−2(q− ℓ−1)n+(q− ℓ−2)n,

and

1

qn−1

∑

c′

γ(0n → α(0n, c
′)) ≤

(q − 1)B(0)

qn−1q
+

q−2∑

ℓ=1

q − 1− ℓ

qn−1
B(ℓ).

Proof: The multinomial coefficient
(

n
n0,nℓ,nq−ℓ−1

)
gives the

total number of vectors c̃′ of length n which necessarily have the

alphabet elements 0, q− ℓ− 1 and such that the other alphabets

are present in Φ(c̃′) with gaps of at most ℓ between successive

alphabet elements. The cost of writing such vectors to the state

0n is q − 1− ℓ.
For ℓ = 0, the quantity B(0) counts the number of vectors

which have all the alphabet elements in it, i.e.,

B(0) =
∑

(n0,n0,nq−1),
nj>0, ∀j

(
n

n0,n0, nq−1

)
.

For each vector in this count, any shift by a multiple of j will

still have all the alphabet elements occuring in it. Therefore, to

count only the cosets, we use the quantity 1
q
B(0). The cost of

writing any vector in such a coset is exactly q − 1.

For q − 2 ≥ ℓ ≥ ⌊q/2⌋, the number of such vectors can

be exactly computed since all possible sequences 1(nℓ) ∈
{0, 1}q−2−ℓ are allowed. Thus, we get

∑

(n0,nℓ,nq−1−ℓ)
n0,nq−1−ℓ>0

(
n

n0,nℓ, nq−1−ℓ

)

=
∑

(n0,nℓ,nq−1−ℓ)

(
n

n0,nℓ, nq−1−ℓ

)

−
∑

(nℓ,nq−1−ℓ)
nq−1−ℓ>0

(
n

nℓ, nq−1−ℓ

)
−

∑

(n0,nℓ)
n0>0

(
n

n0,nℓ

)
−
∑

nℓ

(
n

nℓ

)

= (q − ℓ)n − 2(q − 1− ℓ)n + (q − 2− ℓ)n,

where the last step is obtained by using

∑

n0>0,nℓ

(
n

n0,nℓ

)
=

∑

n0,nℓ

(
n

n0,nℓ

)
−

∑

nℓ

(
n

nℓ

)
.

For ℓ = q − 1, the cost is zero.

Finally, for
⌊
q
2

⌋
> ℓ ≥ 1, there can be multiple vectors in the

same coset with the same cost q − 1− ℓ. We simply use B(ℓ)
as an upper bound since this count of the vectors with the same

cost within the same coset could be anywhere between 1 and

q/(ℓ+ 1).

For q = 3, we get the following expression for the cost

2

3n−1

1

3

∑

n0,n1,n2>0

(
n

n0, n1, n2

)
+

1

3n−1
(2n − 2)

=
1

3n−1

(
2

3
· 3n − 5(2n − 2)− 6

)
.

This is an upper bound to the cost for q = 3. Not surprisingly,

for large n, the cost tends to 2.

Lemma 3.4. For sufficiently large n, the dominant term in the

upper estimate of the average cost is
(q−1)B(0)

qn
.

Proof: First we show that the term f(ℓ, n) , (q − ℓ)n −
2(q−1−ℓ)n+(q−2−ℓ)n is strictly decreasing with increasing

ℓ. To show this, consider it as a continuous function of ℓ. The

first derivative is f ′(ℓ, n) = −nf(ℓ, n − 1) which is always

strictly negative.



Next, observe that if we relax the run-length-limited condition

on nℓ then the count B(ℓ) can be upper bounded as B(ℓ) ≤
f(ℓ, n) for all ℓ > 0.

Finally, we estimate the first term B(0) using the inclusion-

exclusion principle and show tight asymptotic behavior of this

term. In particular, our objective is to show that it dominates

the other terms in the asymptotics of large n. First, we note the

following upper bound,

q−2∑

ℓ=1

(q − 1− ℓ)B(ℓ) ≤

q−2∑

ℓ=1

(q − 1− ℓ)f(ℓ, n)

≤ (q − 2)2 ×(
(q − 1)n − 2(q − 2)n + (q − 3)n

)
,

where the last inequality is obtained by using the fact that

f(ℓ, n) is strictly decreasing with increasing ℓ. We can express

B(0) as follows,

B(0) =

q−2∑

i=0

(−1)i
(
q

i

)
(q − i)n. (4)

This term can be clearly upper bounded as

B(0) ≤ qn.

To get a lower bound on B(0), we expand it and pair up the

terms, starting from the third term. For q even, we get

B(0) = (qn − q(q − 1)n) +
q
2
−2∑

i=1

((
q

2i

)
(q − 2i)n −

(
q

2i+ 1

)
(q − 2i− 1)n

)

+

(
q

2

)
2n,

and for q odd we get

B(0) = (qn − q(q − 1)n) +

⌊ q
2⌋−1∑

i=1

((
q

2i

)
(q − 2i)n −

(
q

2i+ 1

)
(q − 2i− 1)n

)
.

Note that all the pairs of terms are positive for sufficiently large

n, and hence we can lower bound B(0) as

B(0) ≥ qn − q(q − 1)n.

Therefore, we can get an upper and lower estimate for the upper

bound on the average cost, and both these upper and lower

estimates converge to q − 1. We show this next.

(q − 1)B(0)

qn
+

(q − 2)2

qn−1

(
(q − 1)n − 2(q − 2)n + (q − 3)n

)

≤ (q − 1)

(
1 + (q − 2)2(q − 1)

[(q − 1

q

)n

− 2
q − 2

q − 1

(q − 2

q

)n−1

+
q − 3

q − 1

(q − 3

q − 1

)n−1])

→ (q − 1), for n → ∞.

Also,

(q − 1)B(0)

qn
+

(q − 2)2

qn−1

(
(q − 1)n − 2(q − 2)n + (q − 3)n

)

≥ (q − 1)
[
1− q

(q − 1

q

)n]
+ (q − 2)2(q − 1)

[(q − 1

q

)n

− 2
q − 2

q − 1

(q − 2

q

)n−1

+
q − 3

q − 1

(q − 3

q − 1

)n−1]

→ (q − 1), for n → ∞.

We note that the first term involving B(0) dominates in the

asymptotics of large n.

For large n, the upper bound converges to the worst case cost

q−1. Intuitively, this is not surprising since the probability that

all the symbols from the alphabet appear in a codeword of length

n tends to one for large blocklengths n.

Scheme A can be generalized to a different scheme that we

call Scheme B. This new scheme is based on the observation

that given a codeword we can change the charge level of

any individual cell independently of the other cells; thus we

can potentially increase the average number of rewrites that

can be performed. This construction can also be viewed as a

generalization of the construction in [7] from binary to q-ary.

Scheme B: Consider C[n, k + δ, d] as a subspace of F
n
q con-

taining the all-one vector j, and let D be a subcode of C
of dimension δ such that j ∈ D. We encode the coset code

C = C/D of size qk by using the encoding function in (1) and

the decoding function is given by

β(s) = s mod q +D.

Intuitively, Scheme B divides the total number of discrete

charge levels L into L/q parts, each part representing q distinct

levels, and each individual cell is increased to the next higher

part independently of the other cells. In particular, for q = 2 all

the even levels in Fig. 1 represent bit 0, and all the odd levels

represent bit 1. If q = 3, then the levels 0 and 3 represent 0,

levels 1 and 4 represent 1, and levels 2 and 5 correspond to 2.

This is a generalization of the method in [7] where the number

of levels is divided into distinct sets of size two. It differs from

the same work in the encoding because we do not minimize only

bit flips. The maximum increase in the level happens when the

cell transitions from level 0 mod q to (q−1) mod q, or i mod q
to (i−1) mod q, i = 1, . . . , q−1, which incurs a cost of q−1.
Thus, Lemma 3.1 holds for Scheme B. On the other hand, the

average number of rewrites of Scheme B is potentially better

than Scheme A. This is illustrated in Section 4-B.

4. COMPARISON OF CODING SCHEMES

In this section we compare the coding schemes Scheme

A and Scheme B against the rank modulation scheme of [8,

Construction 18]. In particular, we analyze the information rate

for the worst case cost, and the average number of rewrites

between the different schemes.



A. Comparison of Worst Case Behavior

To compare the worst case behavior of Scheme A and Scheme

B with the previous work that addresses the problem of uni-

form discharge, we first briefly introduce the rank modulation

scheme. The rank modulation coding scheme in [8] considers

permutation vectors as the codewords. Every permutation word

of length n corresponds to n distinct charge levels. In [8,

Construction 18] the following scheme is proposed for ensuring

that the code is optimal in minimizing the worst case rewrite

cost.

Construction 18: (see [8]) Let Sn denote the set of all

permutations of the set [n], and let [n]Pm denote the set of

all m-permutations of the set [n]. If γ(s → s′) ≤ m, then
nPm = n!/(n−m)! words are uniquely represented by all the

words in [n]Pm. Let a = (a1, . . . , am) ∈ [n]Pm. Define the

prefix set Pm(a) as the set of all permutations in Sn which

have a as a prefix. Then a vector a ∈ [n]Pm is encoded

to a permutation vector in the prefix set Pm(a) by choosing

the permutation which minimizes the maximum level in the

new state vector. Thus the rank modulation scheme encodes

log2
nPm ≤ m log2 n bits of information as state vectors.

In comparison, for q − 1 = m, and for m a constant,

a coset code C = F
n
q /D, where D has constant dimension

δ (independent of n) has the same worst case rewrite cost.

However the size of the coset code is qn−δ, and so it encodes

(n − δ) log2 q bits of information on every write. The ratio of

the number of encoded bits is lower bounded as

log2 |C|

log2
nPm

≥
(n− δ) log2 q

m log2 n
=

(n− δ) log2 q

(q − 1) log2 n
→ ∞,

when n → ∞. Thus, the coset coding scheme can encode

asymptotically more information than the rank modulation

scheme for same maximum rewrite cost. Note that this scheme

uses the “entire space” in both the linear space and the permuta-

tion space and so provides no correction of random errors. Both

the schemes can provide error correction in case of uniform

charge leakage.

B. Comparison of Average Behavior

To compare the coset code constructions in Scheme B with

Construction 18, we first ensure that the total number of discrete

levels L are the same. Next, we ensure that the worst case cost

of both the schemes are the same. Therefore, we fix m = q− 1
and consider the optimal rank modulation code with this worst

case cost. Finally, we consider linear codes and permutation

codes of the same block length n. Given these constraints, we

determine the average number of times we are able to rewrite by

randomly choosing the next vector from the respective spaces.

In the case of rank modulation code, this random vector is

chosen by picking the best vector from the set Pm(a) where

a ∈ [n]Pm is randomly selected. For the linear code, a random

coset in F
n
q /D is chosen, where j ∈ D.

Fig. 2 shows the performance of the different schemes for

L = 16, n = 8, q = 3, m = 2. Table I compares the parameters

of the codes that are being simulated. The number of rewrites

is averaged over 1000 trials. In each trial, we select words at

random and we count the number of times we can rewrite until

the level exceeds L. The horizontal axis shows the number

of rewrites and the vertical axis shows the frequency of that

number. The average number of rewrites of the rank modulation

codes is 6, which is significantly lower than the average number

of rewrites of the coset codes, viz. 22 for Scheme B with cosets

of D = 〈11110000, 00001111〉 and 38 for Scheme B with

cosets of D = 〈11000000, 00110000, 00001100, 00000011〉,
even though the codes have the same worst case cost of rewrites.

To compare the performance of Scheme A with Scheme B,

we consider the same coset code C = F
8
3/D, with D = 〈j8〉.

The average number of rewrites in Scheme B is 18 which is

larger than the average of 14 in Scheme A, and 12 for F8
3; see

Fig. 3. We also compare the performance of Scheme B with

the FlipMin scheme in Fig. 3, for q = 2,D = 〈j8, (j4, 04)〉.
FlipMin achieves an average of 38.2 rewrites, while Scheme B

achieves 39.6 rewrites on average. Note that we increase the

charge level in each cell individually in FlipMin. The figure

also shows the effect of using different alphabets and cosets on

the rewrite performance of Scheme A and Scheme B.

TABLE I
TABLE COMPARING THE SIZES AND INFORMATION BITS OF THE CODES

USED IN THE DIFFERENT SCHEMES FOR n = 8

Scheme Coset dim./Prefix len. q Size Bits encoded

Construction 18 2 3 56 < 6

Scheme B 2 3 729 > 9

Scheme B 4 3 81 > 6

Scheme A/B 1 3 2187 > 11

Scheme B 0 3 6561 > 12

FlipMin/Scheme B 2 2 64 6
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5. CONCLUSION

We introduce coset codes of linear codes to correct uniform

charge leakage, improve rewritability, and to correct random

errors in flash memory storage. It will be interesting to combine

and study coset codes which can also address the problem

of overshooting if we relax the requirement of careful charge

injection during writing in flash memory.
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