
Efficient Decoding of Permutation Codes Obtained
from Distance Preserving Maps

Yeow Meng Chee and Punarbasu Purkayastha
Division of Mathematical Sciences, School of Physical & Mathematical Sciences

Nanyang Technological University, Singapore 637371
Emails: {ymchee, punarbasu}@ntu.edu.sg

Abstract—We study the decoding of permutation codes ob-
tained from distance preserving maps and distance increasing
maps from Hamming space. We provide efficient algorithms for
estimating the q-ary digits of the Hamming space so that decoding
can be performed in the Hamming space.

Index Terms—Permutation codes, Distance preserving maps

I. INTRODUCTION

Transmission of data over high voltage electric power lines
is a challenging problem due to the harsh nature of the channel.
The noise characteristics of this channel, called the powerline
communication (PLC) channel, include permanent narrowband
noise, impulse noise, in addition to fading and additive white
Guassian noise. Vinck [8] studied this channel and showed
that M -ary Frequency Shift Keying (M -FSK) modulation, in
conjunction with the use of permutation codes, provide the
required redundancy to correct the errors resulting from the
harsh noise pattern. This has given rise to increased research
on codes in the permutation space (see [4] for a survey). One
method to obtain a permutation code is to consider distance
increasing maps (DIMs) or distance preserving maps (DPMs)
from the Hamming space to the permutation space. The
works in [3], [5]–[7] address the problem of constructing such
DIMs and DPMs. Unlike the case of codes in the Hamming
space, decoding of codes in the permutation space is a more
difficult problem, especially because of the loss of linearity.
Bailey [1] gave efficient decoding algorithms in the case
when the permutation codes are subgroups. Unfortunately, the
permutation codes obtained from DIMs or DPMs of codes
in the Hamming space are not permutation groups in general.
Swart and Ferreira [7] studied some DIMs and DPMs from the
binary Hamming space to permutations and provided efficient
decoding algorithms for determining the binary vectors.

In this work we study the problem of decoding permutation
codes obtained from DIMs or DPMs of q-ary Hamming
codes. The main idea that we employ is to perform only
estimation of the q-ary digits from the received vector. The
actual decoding of the estimated q-ary vector is performed in
the q-ary Hamming space. Decoding of linear codes is a very
well studied problem and many efficient decoding algorithms
exist. Our aim here is to provide efficient ways of estimating
the q-ary digits so that the overall estimation and decoding
procedure still retains low complexity.

We use the notation SN to denote the permutation space
over the symbols {0, . . . , N − 1}. Each element σ of SN is

written as a vector σ = (σ0, . . . , σN−1), which represents the
output of the permutation. The distance between two elements
of SN is taken to be the Hamming distance between their
vector representations. We use the notation Zn

q = {0, . . . , q −
1}n to denote the Hamming space. A distance-preserving map
Π : Zn

q → SN is a mapping which preserves the Hamming
distance between any two vectors, that is, d(Π(x),Π(y)) ≥
d(x,y) for any vectors x,y ∈ Zn

q . A distance-increasing map
Π : Zn

q → SN strictly increases the Hamming distance, that is,
d(Π(x),Π(y)) > d(x,y) for any distinct vectors x,y ∈ Zn

q .
An upper bound on the size of a permutation code with

minimum distance d is given by N !/(d − 1)!. Clearly, the
information rate of a permutation code can be larger than the
rate achievable by DPMs from q-ary Hamming space (unless
q is proportional to N). Sharply k-transitive groups, which
have efficient decoding, are known to achieve this upper bound
(see [1], [2]). For such groups either d ≤ 3 or d ≥ N − 4.
In the latter case, the size of the code is only polynomial in
N . Thus it is of interest to consider other means of obtaining
permutation codes, for instance from DPMs.

In the following sections we consider very specific DIMs
and DPMs. All the DIMs and DPMs we use are non-length
preserving, but ensure that efficient estimation algorithms
exist. Hence, the rate of the codes decreases by a factor of
1/ dlog2 qe, compared to the q-ary code in the Hamming space.
We consider a channel, for instance the PLC channel, which
introduces both errors and erasures. The simplest such algo-
rithm, and DIM from the binary Hamming space, introduced in
the next section has only linear complexity. This algorithm also
guarantees that the estimation procedure does not introduce
extra errors or erasures in the binary digits. The mappings in
the subsequent sections are more complicated and require at
least two symbols in the permutation space to estimate one
q-ary digit. Hence, such guarantees can be provided if the
channel introduces only erasures.

II. DIM FROM BINARY VECTORS TO PERMUTATIONS

In this section we discuss a DIM from binary vectors to
permutations. Lee [5] studied a DIM and its properties, which
is similar to this DIM (also, [7, Eg. 1]). We give an efficient
algorithm in the permutation space which provides only an
estimate of the bits. We first describe the DIM used here.

The DIM maps a binary vector b = (b0, . . . , bn−1) of length
n to a vector σ = (σ0, . . . , σn) of length n + 1 in Sn+1.

We start from the identity permutation σ(−1) = (0, . . . , n).
The bit b0 permutes the first two coordinates, resulting in a
vector σ(0) = (σ

(0)
0 , . . . , σ

(0)
n). For i = 1, . . . , n− 1 the bit bi

permutes the coordinates σ(i−1)
i and σ(i−1)

i+1 of σ(i−1). Let Π0

denote this mapping. The example below illustrates the map
of b = (1, 1, 0, 1) to the permutation vector (1, 2, 0, 4, 3). For
brevity of exposition we write the vector σ in a compact form,
σ = 12043. Underlined portions denote the affected symbols.

EXAMPLE 2.1: 01234
b0=1−−−→ 10234

b1=1−−−→ 12034
b2=0−−−→

12034
b3=1−−−→ 12043.

ALGORITHM 2.2: DIM Π0 from Zn
2 to Sn+1

Input: b = (b0, . . . , bn−1) ∈ Zn
2

Output: σ = (σ0, . . . , σn) ∈ Sn+1

σ(−1) ← (0, . . . , n)
for i from 0 to n− 1

σ(i) ← σ(i−1)

if bi = 1 then
σ
(i)
i ← σ

(i−1)
i+1 , σ

(i)
i+1 ← σ

(i−1)
i

The proposition below proves that the mapping is indeed a
DIM.

Proposition 2.3: (see [5]) The mapping Π0 is a DIM with
d(Π0(b),Π0(b′)) ≥ d(b, b′) + nR, where nR is the number
of runs of ones in supp b∪ supp b′, where supp b denotes the
support of the vector b.

Proof: We consider three cases that the supports of the
two vectors b and b′ can satisfy. First, suppose that b contains
the following segment in the first l coordinates (WLOG, we
may assume it is the first l coordinates)

1, 1, . . . , 1︸ ︷︷ ︸
l

,

and b′ contains the segment in the first l coordinates

0, . . . , 0︸ ︷︷ ︸
m1

1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m2

,

where m1 + m + m2 = l with 0 < m < l and m1,m2 ≥ 0.
Then the first l coordinates of Π0(b) is (1, 2, . . . , l), and
the first l coordinates of Π0(b′) is (0, 1, . . . ,m1 − 1,m1 +
1, . . . ,m1 +m,m1,m1 +m+ 1, . . . , l− 1). Thus, the propo-
sition is satisfied in the first l coordinates.

The second case that may arise is of the following form.
Let, WLOG, the first l coordinates of b be

0, . . . , 0︸ ︷︷ ︸
m

1, . . . , 1︸ ︷︷ ︸
l−m

,

where l > m > 0. Let the first l coordinates of b′ be of the
form

1, . . . , 1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l−m−k

,

where m, k > 0 and l > m + k. Then the first l coordinates
of Π0(b) is of the form (0, 1, . . . ,m − 1,m + 1, . . . , l) and
the first l coordinates of Π0(b′) is (1, 2, . . . ,m + k, 0,m +
k + 1, . . . , l − 1). Thus the proposition is satisfied since the

number of runs of ones in supp b∪ supp b′ is one in the first
l coordinates.

Finally, the third case is of the form where the first l
coordinates of b is (0, . . . , 0) coordinates but the first l
coordinates of b′ is (1, . . . , 1, 0). Then the first l coordinates
of Π0(b) contains the vector (0, 1, . . . , l − 1) while the first
l coordinates of Π0(b′) is (1, 2 . . . , l − 1, 0). Thus, in all the
cases the distance increases by the number of runs of ones in
supp b ∪ supp b′.

A. Estimating bits from the permutation vector

A very simple estimation procedure gives the correct binary
bit if the received symbol is correct in the corresponding
coordinate. The algorithm is described below. We denote
an erasure by the symbol ε. Let the vector received as the
output of the channel be denoted by y. It lies in the space
{Zn+1 ∪ ε}n+1.

ALGORITHM 2.4: Estimating bits from y
Input: y = (y0, . . . , yn) ∈ {Zn+1 ∪ ε}n+1

Output: b̂ = (b̂0, . . . , b̂n−1) ∈ {Z2 ∪ ε}n
for i from 0 to n− 1

if yi = i+ 1 then b̂i ← 1
elseif yi < i+ 1 then b̂i ← 0
else b̂i ← ε.

The estimate b̂ can be now provided to the decoder for
the binary code for decoding. Clearly, the above algorithm
never introduces any error if the coordinate yi is correct.
Hence, this procedure can correctly decode with a bounded
distance decoder if the number of errors ne and the number
of erasures nε satisfy the condition 2ne + nε < d, where
d is the minimum distance of the binary code. In practice
the algorithm potentially corrects more errors. For example if
the transmitted symbol corresponding to bi = 0 is different
from the received symbol yi, but the received symbol satisfies
yi < i + 1 then there is no error in estimating the bit b̂i.
This algorithm performs at most 2n comparisons and has
a memory requirement of exactly one symbol at each step.
In comparison the decoding algorithm in Swart & Ferreira
[7] performs decoding in the permutation space, under M -
FSK signaling, and requires O(M2 + nM) computations and
o(3nM

2

) memory.
If the rate of the binary code is R then the rate of

transmission of information bits is Rn/(n+1). From the DIM
and the estimation algorithm it can be inferred that only about
“half” the permutation space is used for communication over
an M -FSK channel. At the i-th time instance, the symbols
i + 2, . . . , n are used neither during transmission nor during
the decoding procedure. If the DIM is from a linear binary
code of dimension k = Rn, then one can achieve a rate of
k/(n+ 1) + (k− 3)/(n− 2) by utilizing the unused symbols
to transmit a shortened codeword b̃ of length n − 3, but in
reverse order of the DIM. If σ̃(−1) = (3, . . . , n) then b̃0 flips
σ̃
(−1)
n−3 and σ̃(−1)

n−4 , b̃1 flips σ̃(0)
n−4, σ̃

(0)
n−5, and so on.

III. DIM FROM 2m-ARY VECTORS TO PERMUTATIONS

In this section we describe a modification to the mapping
in Section II so that it can be used for q-ary vectors
where q = 2m. The primary aim is to provide a simple
means of estimating the symbols used. The idea is to use a
binary representation of each symbol and map that binary
representation of length m to an m + 1 length permutation
vector. We give an example below and then we describe
the algorithm formally. We denote this mapping by Π1. For
brevity, we write the vectors in a compact form.

EXAMPLE 3.1: Let q = 22 and let the symbols
{0, 1, 2, 3} be mapped to their natural binary representation
as 0 7→ 00, 1 7→ 01, 2 7→ 10, and 3 7→ 11.
The vector s = 132 is mapped to the permutation
vector 0234516 in the following sequence of steps:
0123456

01−→ 0213456
11−→ 0234156

10−→ 0234516. The
underlined portions denote the affected symbols.

ALGORITHM 3.2: DIM Π1 from Zn
2m to Smn+1

Input: s = (s0, . . . , sn−1) ∈ Zn
2m

Output: σ = (σ0, . . . , σmn) ∈ Smn+1

σ(−1) ← (0, 1, . . . ,mn)
for i from 0 to n− 1

for j from 0 to m− 1
σ(im+j) ← σ(im+j−1)

bi = (bi,0, . . . , bi,m−1), binary representation of si
if bi,j = 1 then

σ
(im+j)
im+j+1 ← σ

(im+j−1)
im+j

σ
(im+j)
im+j ← σ

(im+j−1)
im+j+1

The estimation procedure for the symbols is the same as
described in Section II-A. We estimate the bits and then
recombine the bits to form the symbols. This is an efficient
and reasonably effective method of estimating the symbols
provided that the number of errors and erasures introduced by
the channel is low. The number of comparisons required is
at most 2mn. One drawback of this DIM is that the rate of
transmission of information bits decreases by a factor of 1

m .

IV. DPM FROM BINARY VECTORS TO PERMUTATIONS

In this section we develop a new distance preserving map
(DPM) from binary vectors to permutation vectors, which
allows us to estimate the binary symbols efficiently. The
mapping converts a length n binary vector to a length n + 1
permutation vector in Sn+1. This method is introduced so
that it can be generalized to a new DPM from ternary vectors
to permutations in the next section. The following lemma is
essential to the constructions in the remaining sections.

Lemma 4.1: Let (σ0, . . . , σl) be a permutation of
(0, 1, . . . , l). Then σ = (σ0+i, . . . , σl+i, l+1+i, . . . , l+j+i)
mod (l+j+1) is a permutation of the vector (0, 1, . . . , l+j),
and the modulo is performed on each coordinate of the vector.

Proof: Consider the vector Σ = (0, . . . , l, l+1, . . . , l+j)
in Sl+j+1. Adding i modulo l + j + 1 to each coordinate of
Σ results in a vector Σ + i which is a cyclic shift of Σ to the
left by i positions. Hence Σ + i is also in Sl+j+1. Considered
as an unordered tuple, the elements of σ are the same as the
elements of Σ + i and hence σ is also a vector in Sl+j+1.

We now describe the algorithm to map the binary
vectors to the permutation vectors. For a binary vector
b = (b0, . . . , bn−1) the algorithm proceeds recursively as
follows. Consider the binary vector as a {0, 1}-vector in
R. The algorithm is initialized by starting with the identity
permutation represented as σ(−1) = (0, 1, . . . , n). For each
i = 0, . . . , n − 1, the element bi is added to the first i + 2
positions of the permutation vector σ(i−1) modulo (i + 2),
where σ(i−1) is the vector resulting from the previous
iteration. Denote the DPM by Π2. The example below
illustrates the procedure.

EXAMPLE 4.2: We map 1101 to 32140 as follows:
01234

b0=1−−−→ 10234
b1=1−−−→ 21034

b2=0−−−→ 21034
b3=1−−−→ 32140.

ALGORITHM 4.3: DPM Π2 from Zn
2 to Sn+1

Input: b = (b0, . . . , bn−1) ∈ Zn
2

Output: σ = (σ0, . . . , σn) ∈ Sn+1

σ(−1) ← (0, 1, . . . , n)
for i from 0 to n− 1

σ(i) ← σ(i−1)

for j from 0 to i+ 1
σ
(i)
j ← σ

(i−1)
j + bi mod (i+ 2)

Proposition 4.4: Π2 is a DPM from Zn
2 to Sn+1, that is

for b, b′ ∈ Zn
2 , d(Π2(b),Π2(b′)) ≥ d(b, b′).

Before providing the proof of the proposition we determine
the output of the mapping Π2 as a nonrecursive function of the
input bits bi, i = 0, . . . , n− 1. For brevity of the exposition,
we introduce the notation [a]p to denote a mod p. Recall
that the binary vector b is considered as a {0, 1}-vector over R.

Lemma 4.5: If Π2(b) = σ = (σ0, . . . , σn), then

σ0 = b0 + · · ·+ bn−1,

σl = [l + bl−1]l+1 + bl + · · ·+ bn−1, l = 1, . . . , n.

Proof: The output of the mapping Π2 is given by

σ0 = [· · · [[b0]2 + b1]3 + · · ·+ bn−1]n+1,

σl = [· · · [[l + bl−1]l+1 + bl]l+2 + · · ·+ bn−1]n+1, l > 0.

For any l = 1, . . . , n, we have that [l+bl−1]l+1 ≤ l and hence
[l+bl−1]l+1+bl ≤ l+1. This implies [[l+bl−1]l+1+bl]l+2 =
[l+bl−1]l+1+bl, that is, we can remove the modulo operation.
Similarly, the modulo operations by l + 3, . . . , n + 1 can be
removed. The same argument shows that σ0 can be obtained
by adding up the bits over R.

Proof of Proposition 4.4: Let b = (b0, . . . , bn−1) and
b′ = (b′0, . . . , b

′
n−1), be {0, 1}-vectors over R. The proof pro-

ceeds by induction on the number of consecutive bits that are
different between the vectors b and b′. Suppose bi−1 6= b′i−1.
Then we show that either σi 6= σ′i or σi−1 6= σ′i−1.

Let ∆i =
∑n−1

l=i bl−b′l. Note that if b0 6= b′0 then the vectors
are clearly different in at least the first 2 positions. So, let
i ≥ 2. First, suppose that ∆i = 0. Clearly, bi−1 6= b′i−1 implies
σi 6= σ′i. Now, assume that ∆i 6= 0. If σi = σ′i then without
loss of generality assume that bi−1 = 0 and b′i−1 = 1. Using
Lemma 4.5 in the equation σi = σ′i leads to the condition
i = −∆i. We claim that σi−1 6= σ′i−1. Suppose not. We get

[i− 1 + bi−2]i +
∑

l≥i−1

bl = [i− 1 + bi−2]i +
∑

l≥i−1

b′l. (1)

We consider the different possibilities of bi−2 and b′i−2. If
bi−2 = b′i−2 then (1) results in ∆i = 1, a contradiction to
i = −∆i. Similarly, one obtains contradictions for other values
of bi−2 and b′i−2.

Finally, we show by induction that if bi+j 6= b′i+j , j =
0, . . . , k − 1, then σi+j 6= σ′i+j for at least k terms of j ∈
{0, . . . , k}. The case k = 1 is proved above. Assume it is
true for any k − 1 consecutive bi+j’s. The only non-trivial
case we need to consider is if σi = σ′i and σi+k = σ′i+k. We
claim this is not possible. Suppose σi+k = σ′i+k. Then using
bl−1 − b′l−1 ∈ {−1, 0, 1}, for l = 1, . . . , n, we write

σl − σ′l = −(bl−1 − b′l−1)l + ∆l.

Using σi+k−σ′i+k = −(bi+k−1−b′i+k−1)(i+k)+∆i+k = 0,
we get

σi − σ′i = −(bi−1 − b′i−1)i+ ∆i −∆i+k−1

+ (bi+k−1 − b′i+k−1)(i+ k + 1).

Since | − (bi−1 − b′i−1)i+ ∆i −∆i+k−1| ≤ i+ k− 1 and the
last term of σi − σ′i is ±(i+ k + 1), we get σi 6= σ′i.

A. Estimating the bits from the permutation vector

In this section we consider a method to estimate the bits
from the permutation vectors, with low complexity. The
estimated bits can then be provided to the decoder of the
binary code for further processing. The main idea behind the
estimation method is the following lemma.

Lemma 4.6: Let Π2(b) = σ. The difference between any
two coordinates σi, σj for j > i satisfies

σi − σj

{
> 0, if bj−1 = 1,

< 0, if bj−1 = 0.

Proof: We get,

σi − σj = [i+ bi−1]i+1 +

j−2∑
l=i

bl + bj−1 − [j + bj−1]j+1.

The statements in the lemma follow from the observation that
[i+ bi−1]i+1 +

∑j−2
l=i bl ≤ j − 1.

Let the received vector from the channel be denoted by
y ∈ {Zn+1 ∪ ε}n+1. By Lemma 4.6, it is clear that the
simplest estimation algorithm will consider a pair of distinct
coordinates yi, yj and determine bj−1 from their difference.
This can lead to erroneous estimation if either of the two
coordinates are in error. However, correct estimation of bj−1
is guaranteed if both the coordinates are correct. If yj = ε,
then bj−1 can not be determined from yj and we set b̂j−1 = ε.
Algorithm 4.7 below describes the procedure.

The term t > 0 in the algorithm corresponds to performing
a majority vote for the estimate b̂j for each j = 0, . . . , n− 1.
Algorithm 4.7 requires at most n(n + 1) additions and
subtractions, and 3n + n

2 (n + 1) comparisons. By restricting
|Lj | to at most a constant number, say `, the number of
additions and subtractions can be reduced to at most 2`n,
at the cost of less reliable estimate of the bits in the higher
indices. If the number of errors and erasures are small then
one can expect the above algorithm to perform well even for
small |Lj |.

ALGORITHM 4.7: Estimating the binary vector b̂ from y
Input: y = (y0, . . . , yn) ∈ {Zn+1 ∪ ε}n+1

Output: b̂ = (b̂0, . . . , b̂n−1) ∈ {Z2 ∪ ε}n
L0 ← φ, the empty set
for j from 1 to n

Lj ← Lj−1 ∪ {j − 1 : yj−1 6= ε}
if yj = ε then b̂j−1 ← ε
else t← 0

for each l in Lj

if yl − yj > 0 then t← t+ 1
else t← t− 1

if t > 0 then b̂j−1 ← 1
elseif t < 0 then b̂j−1 ← 0
else b̂j−1 ← ε

B. Estimating bits on an erasure channel

The above algorithm simplifies significantly on an erasure
channel. Using |Lj | = 1 is sufficient to guarantee that the
number of erasures in the estimated bits b̂ is at most the
number of erasures in the received symbols y. In addition,
if the symbol 0 of Sn+1 is present in the received vector y,
then one can immediately estimate all the succeeding bits
correctly, irrespective of the received values from the channel.
This observation is formalized in the following lemma.

Lemma 4.8: Let b ∈ Zn
2 and let σ = Π2(b). If σj = 0, then

bj−1 = 1 and bl = 0 for all l ≥ j.
Proof: If σj = 0 then we have [j+ bj−1]j+1 + bj + · · ·+

bn−1 = 0 over the reals. This can be achieved only when
bj−1 = 1 and bj = · · · = bn−1 = 0.

In the following section we describe how to extend the
algorithms in this section to a DPM from ternary vectors to
permutations.

V. DPM FROM TERNARY VECTORS TO PERMUTATIONS

Consider a DPM from ternary vectors in Zn
3 to permutation

vectors in S2n+1. For a ternary vector s = (s0, . . . , sn−1),
the element si permutes the first 2i + 3 coordinates of
the permutation vector. As in the previous section, the
construction is recursive and the final permutation vector also
affords a nonrecursive representation in terms of the ternary
digits. We describe the algorithm below. Let the mapping be
denoted by Π3 and consider the ternary digits as elements of
the real field R for all the operations below. We first illustrate
this algorithm by an example below.

EXAMPLE 5.1: We map 121 to 4531260 using Π3 as
follows. 0123456

s0=1−−−→ 1203456
s1=2−−−→ 3420156

s2=1−−−→
4531260.

ALGORITHM 5.2: DPM Π3 from Zn
3 to S2n+1

Input: s = (s0, . . . , sn−1) ∈ Zn
3

Output: σ = (σ0, . . . , σ2n) ∈ S2n+1

σ(−1) ← (0, 1, . . . , 2n)
for i from 0 to n− 1

σ(i) ← σ(i−1)

σ
(i)
2i+1 ← [2i+1+si]2i+3, σ(i)

2(i+1) ← [2(i+1)+si]2i+3

for j from 0 to 2i
σ
(i)
j ← [σ

(i−1)
j + si]2i+3

To prove that the mapping Π3 is a DPM we use an analog
of Lemma 4.5 to express the coordinates σi in the output σ
nonrecursively in terms of the input symbols s0, . . . , sn−1.

Lemma 5.3: Let Π3(s) = σ. Then for all i = 0, . . . , n− 1,

σ0 = s0 + · · ·+ sn−1,

σ2i+1 = [2i+ 1 + si]2i+3 + si+1 + · · ·+ sn−1,

σ2(i+1) = [2(i+ 1) + si]2i+3 + si+1 + · · ·+ sn−1.

Proof: The proof is similar to the proof of Lemma 4.5.
We note that [2i+ 1 + si]2i+3 ≤ 2i+ 2 and hence

[[2i+ 1 + si]2i+3 + si+1]2i+5 = [2i+ 1 + si]2i+3 + si+1,

that is the modulo operation need not be performed. Similar
arguments hold for σ2(i+1), resulting in the nonrecursive
formulae presented in the lemma.

Using this lemma, we can prove the following proposition.

Proposition 5.4: The mapping Π3 from Zn
3 to S2n+1 is a

DPM, that is, d(Π3(s),Π3(s′)) ≥ d(s, s′).
Proof: The idea of the proof is as follows. We first

show that si 6= s′i implies that either at least one of
σ2i+t − σ′2i+t, t = 1, 2 is nonzero, or if both are zero
then σ2i 6= σ′2i. In the latter case, if we additionally have
si−1 6= s′i−1 then we show that σ2i−1 6= σ′2i−1.

For t = 1, 2 we can write,

σ2i+t = [2i+ t+ si]2i+3 +

n−1∑
l=i+1

sl

Similar equations hold for σ′2i+t. Let ∆i =
∑n−1

l=i sl − s′l.
Thus, for t = 1, 2 we get,

σ2i − σ′2i = [2i+ si−1]2i+1 − [2i+ s′i−1]2i+1 + ∆i,
(2)

σ2i+t − σ′2i+t = [2i+ t+ si]2i+3 − [2i+ t+ s′i]2i+3 + ∆i+1,
(3)

Thus, if si 6= s′i and ∆i+1 = 0 then we get σ2i+t 6= σ′2i+t for
both t = 1, 2. If ∆i+1 6= 0 and for at least one of t = 1, 2
we have σ2i+t 6= σ′2i+t then we have proved the needed DPM
condition. The only case that we need to consider now is the
case where ∆i+1 = 0, σ2i+t = σ′2i+t for both t = 1, 2. A
case by case analysis show that the only condition when this
can happen is when |si − s′i| = 2. In this case, we can write
∆i+1 in a compact form

∆i+1 = sgn(si − s′i)(2i+ 1),

where |si − s′i| = 2 and sgn(x) is the sign function

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

Using (2) we get that σ2i 6= σ′2i. If in addition we have that
si−1 6= s′i−1, we show that we also have σ2i−1 6= σ′2i−1. We
get

σ2i−1 − σ′2i−1 = [2i− 1 + si−1]2i+1 − [2i− 1 + s′i−1]2i+1+

(si − s′i) + ∆i+1

= [2i− 1 + si−1]2i+1 − [2i− 1 + s′i−1]2i+1+

sgn(si − s′i)(|si − s′i|+ 2i+ 1).

Now, the last term in the above equation is always ±(2i+ 3)
while the difference of the first two terms is

[2i−1+si−1]2i+1−[2i−1+s′i−1]2i+1 ∈ {±1,±2i,±(2i−1)}.

This proves that σ2i−1 6= σ′2i−1.

A. Estimating the ternary symbols from the permutation vector

The estimation of the ternary symbols from the received
vector is, not surprisingly, more computationally intensive
than the corresponding one in Section IV-A.

Lemma 5.5: Let Π3(s) = σ. The differences between the
symbols {σ2i+1, σ2(i+1)} and {σ2j+1, σ2(j+1)} for j > i
satisfies the following conditions. For l ∈ {2i+ 1, 2(i+ 1)},

σl − σ2j+1

{
< 0, if sj ∈ {0, 1},
> 0, if sj = 2,

σl − σ2(j+1)

{
< 0, if sj = 0,

> 0, if sj ∈ {1, 2}.

Proof: We show the proof for only the case σ2i+1−σ2j+1

since the other cases are similar. Using Lemma 5.3 we get

σ2i+1−σ2j+1 = [2i+1+si]2i+3+

j−1∑
l=i+1

sl+sj−[2j+1+sj]2j+3.

For sj ∈ {0, 1}, we get [2j+1+sj]2j+3 = 2j+1+sj . Since
[2i+ 1 + si]2i+3 +

∑j−1
l=i+1 sl ≤ 2i+ 2 + 2(j − 1− i) = 2j,

we get that the RHS of the above equation is strictly negative.
For sj = 2, we get [2j + 1 + sj]2j+3 = 0 and hence the RHS
is always strictly positive.

This lemma suggests the following algorithm to
determine the ternary symbol sj . Let y = (y0, . . . , y2n)
in {Z2n+1 ∪ ε}2n+1 be the received vector. For l < 2j + 1, if
yl, y2j+1, y2j+2 are not erasures then we take the differences
yl − y2j+1 and yl − y2(j+1) and declare sj = 0 if both the
differences are negative, sj = 2 if both the differences are
positive, and sj = 1 otherwise. We formalize this procedure
in the following algorithm. This algorithm corresponds to
Algorithm 4.7 of Section IV-A.

ALGORITHM 5.6: Estimate ternary symbols from y
Input: y = (y0, . . . , y2n) ∈ {Z2n+1 ∪ ε}2n+1

Output: ŝ = (ŝ0, . . . , ŝn−1) ∈ {Z3 ∪ ε}n
L0 ← φ, the empty set
for j from 1 to n

Lj ← Lj−1∪
{
l : yl 6= ε, l ∈ {2(j−1), 2(j−1)−1}

}
if y2j = ε or y2j−1 = ε then ŝj−1 ← ε
else

t = (t0, t1, t2)← (0, 0, 0)
for each l in Lj

p = (p0, p1)← (yl − y2j−1, yl − y2j)
if p0 < 0 and p1 < 0 then t0 ← t0 + 1
elseif p0 < 0 and p1 > 0 then t1 ← t1 + 1
elseif p0 > 0 and p1 > 0 then t2 ← t2 + 1

if t = (0, 0, 0) then ŝj−1 ← ε
else ŝj−1 ← arg max

{
tl : l ∈ {0, 1, 2}

}
The maximum sum of the sizes of Lj is bounded as∑n
j=1 |Lj | ≤ 1 + 3 + · · ·+ 2n− 1 = n2. Hence the maximum

number of comparisons required is 8n+6n2, and the maximum
number of subtractions and additions required is 3n2. Using
at most a constant size of |Lj | ≤ ` leads to less computations,
at the loss of reliability of the symbols in the higher indices.

B. Estimating ternary symbols on an erasure channel

An analog of Lemma 4.8 allows us to adopt a simpler
decoding procedure in an erasure channel. It relies on the
following lemma.

Lemma 5.7: Let s ∈ Zn
3 , σ = Π3(s). If σ2i+1 = 0 or

σ2(i+1) = 0 then si = 2 or si = 1, resp., and sj = 0, j > i.
The proof of this lemma is very similar to the proof of
Lemma 4.8.

Remark: If the demodulator can provide soft information on
the reliability of the symbols, then Algorithms 4.7 and 5.6
can be simplified by fixing |Lj | = 1 and retaining only the
most reliable symbol from the received symbols at step j. This
also ensures correct estimation of the succeeding digits, if the
corresponding symbols in the received vector are not in error
or in erasure.

VI. SIMULATIONS

We consider the PLC channel with M -FSK modulation and
with only background noise, for simplicity. The transmitted
word is represented as an M ×M {0, 1}-matrix, where M
is the length of the permutation. A 1 in the i-th row and j-
th column indicates that the permutation symbol i is sent at
time j. Since we are considering hard decision decoding, we
simulate background noise by flipping the value of any entry
of the matrix with a probability p. The codewords are chosen
at random from BCH codes over the finite fields Fq for q =
2, 3, 4. For the maps Π0,Π1, the permutation symbol at time
i is taken to be i+ 1 if the (i+ 1, i)-th entry of the received
matrix is 1; it is assumed ε if all entries (j, i), j ≤ i are
0; otherwise it is assumed j if any (j, i)-th entry is 1 for
j ≤ i. For maps Π2,Π3 we set the permutation symbol at
time i to ε if the column i does not contain exactly one 1.
Fig. 1 shows the symbol error and erasure rate of the different
estimation algorithms, after decoding the estimated symbols
with a bounded distance error and erasure decoder.

10-310-210-1100

Probability of background noise

10-6

10-5

10-4

10-3

10-2

10-1

100

S
y
m
b
o
l
e
rr
o
r
a
n
d
 e
ra
su
re
 r
a
te

Performance of the maps using BCH code [n,k,d]q

Π0 ,[7,3,4]2

Π1 ,[7,3,4]4

Π2 ,[7,3,4]2

Π3 ,[8,3,5]3

Fig. 1. Symbol error and erasure rates under background noise

VII. DISCUSSION AND CONCLUSION

We provided several different mappings from q-
ary vectors in Zn

q to permutations in SN . The main
focus of using such mappings was to implement simple
estimation algorithms in the permutation space and provide
the estimated digits to the q-ary code where efficient
decoding algorithms can be implemented. Since the length
N = q+Q(n− 1), Q = dlog2 qe, the information rate of the
codes decreases by a factor of approximately 1/ dlog2 qe for
all the algorithms. We believe that it should be possible to
generalize the map Π3 from ternary vectors to the permutation
space to a DPM Πq : Zn

q → SN , by using an additional Q
symbols at every iteration of the DPM. Hence we have the
following conjecture.

Conjecture 7.1: Let N = q + dlog2 qe (n − 1). Map the
q-ary vector (s0, . . . , sn−1) to (σ0, . . . , σN−1) by Πq as
described below:

σ(0) ← ([0+s0]q, . . . , [q−1+s0]q, q, . . . , q+Q(n−1)−1)
for i from 0 to n− 2

σ(i+1) ← σ(i)

σ
(i+1)
j ← [σ

(i)
j + si+1]Q(i+1)+q, j ≤ q+Q(i+ 1)− 1.

Then Πq is a DPM.

This conjecture has been verified for lengths up to 6 and
q ≤ 8 via numerical calculations. The case q = 8 is the
first case where log2 8 = 3 additional symbols are required
for preserving the distance in the mapping. The following
counterexample shows that 2 additional symbols for each 8-
ary symbol do not suffice to make the mapping a DPM. The
8-ary vectors below have distance 5 while the mapped vectors
have distance 4.

(0, 0, 4, 5, 0) 7→ (9, 10, 11, 12, 13, 0, 1, 2, 5, 6, 7, 8, 3, 4, 14, 15)

(3, 7, 2, 0, 7) 7→ (9, 10, 11, 12, 13, 0, 1, 2, 14, 15, 7, 8, 3, 4, 5, 6)

REFERENCES

[1] R. F. Bailey, “Error-correcting codes from permutation groups”, Discrete
Math. vol. 309, pp. 4253–4265, 2009.

[2] I. F. Blake, G. Cohen and M. Deza, “Coding with permutations”, Inf.
and Contr., vol. 43, pp. 1–19, 1979.

[3] J. C. Chang, “Distance-increasing mappings from binary vectors to
permutations that increase hamming distances by at least two”, IEEE
Trans. Inf. Theory, vol. 52, pp. 1683–1689, April 2006.

[4] S. Huczynska, “Powerline communication and the 36 officers problem”,
Phil. Trans. R. Soc. A, vol. 364, pp. 3199–3214, 2006.

[5] K. Lee, “Distance-increasing maps of all lengths by simple mapping
algorithms”, IEEE Trans. Inf. Theory, vol. 52, pp. 3344–3348, July 2006.

[6] J. Lin, J. Chang, R. Chen, T. Kløve, “Distance-preserving and distance-
increasing mappings from ternary vectors to permutations”, IEEE Trans.
Inf. Theory, vol. 54, pp. 1334–1339, March 2008.

[7] T. G. Swart and H. C. Ferreira, “Decoding distance-preserving permu-
tation codes for power-line communications”, Africon 2007, pp. 1–7.

[8] A. J. H. Vinck, “Coded modulation for power line communications”,
AEU Int. J. of Elec. and Comm., vol. 54, pp. 45–49, January 2000.

